Меню Закрыть

Реле 5 вольт ардуино

Содержание

Реле Ардуно позволяет подключить устройства, работающие в режимах с относительно большими токами или напряжения. Мы не можем напрямую подключить к плате Arduino мощные насосы, двигатели, даже обычную лампочку накаливания – плата не предназначена для такой нагрузки и работать не будет. Именно поэтому нам придется добавить в схему реле, который вы можете встретить в любом проекте. В этой статье мы поговорим о том, что такое реле, какие они бывают, как можно их подключить своем ардуино проекте.

Принцип действия реле

Реле – это шлюз, который позволяет соединить вместе электрические цепи с совершенно разными параметрами. Обычный шлюз на реке соединяет водные каналы, расположенные на разной высоте, открывая или закрывая ворота. Реле в ардуино включает или выключает внешние устройства, определенным образом замыкая или размыкая отдельную электрическую сеть, в которую они подключены. С помощью ардуино и реле мы управляем процессом включения или выключения так же, как включаем или выключаем свет дома – подавая команду на замыкание или размыкание. Ардуино подает сигнал, само же замыкание или размыкание “мощной” цепи будет делать реле через специальные внутренние механизмы. Реле можно представить себе в виде дистанционного пульта, с помощью которого мы выполняем нужные действия с помощью относительно “слабых” сигналов.

Реле характеризуется следующими параметрами:

  • Напряжение или ток срабатывания.
  • Напряжение или ток отпускания.
  • Время срабатывания и отпускания.
  • Рабочие ток и напряжение.
  • Внутреннее сопротивление.

В зависимости от типа этих внутренних размыкающих механизмов и особенностях устройства можно выделить две основные группы реле: электромеханические реле (включение с помощью электромагнита) и твердотельные реле (включение через специальные полупроводниковые компоненты).

Электромагнитные и твердотельные реле

Электромагнитное реле

Электромагнитное реле – это электрическое устройство, которое механическим путем замыкает или размыкает цепь нагрузки при помощи магнита. состоит из электромагнита, подвижного якоря и переключателя. Электромагнит – это провод, который намотан на катушку из ферромагнетика. В роли якоря выступает пластина из магнитного материала. В некоторые модели устройства могут быть встроены дополнительные электронные компоненты: резистор для более точного срабатывания реле, конденсатор для уменьшения помех, диод для устранения перенапряжений.

Работает реле благодаря электромагнитной силе, возникающей в сердечники при подаче тока по виткам катушки. В исходном состоянии пружина удерживает якорь. Когда подается управляющий сигнал, магнит начинает притягивать якорь и замыкать либо размыкать цепь. При отключении напряжения якорь возвращается в начальное положение. Источниками управляющего напряжения могут быть датчики (давления, температуры и прочие), электрические микросхемы и прочие устройства, которые подают малый ток или малое напряжение.

Электромагнитное реле применяется в схемах автоматики, при управлении различными технологическими установками, электроприводами и другими устройствами. Реле предназначено для регулирования напряжений и токов, может использоваться как запоминающее или преобразующее устройство, также может фиксировать отклонения параметров от нормальных значений.

Классификация электромагнитных реле:

  • Управляющий ток может быть как постоянным, так и переменным. В первом случае устройство может быть нейтральным или поляризованным. Для переменного тока якорь выполняется из электротехнической стали, чтобы уменьшить потери.
  • Якорное или герконовое реле. Для якорного процесс замыкания и размыкания происходит при помощи перемещения якоря, для герконового характерно отсутствие сердечника, магнитное поле воздействует на электрод с контактами.
  • Быстродействие – до 50 мс, до 150 мс и от 1 с.
  • Зщитное покрытие – герметизированное, зачехленное и открытое.
Читайте также:  С чего начинать обучение программированию 1с

По сравнению с полупроводниковыми устройствами электромагнитное реле обладает преимуществами – оно стоит недорого, коммутация большой нагрузки при небольшом размере устройства, малое выделение тепла на катушке. Из недостатков можно выделить медленное срабатывание, помехи и сложность коммутации индуктивных нагрузок.

Твердотельные реле

Твердотельные реле считаются хорошей альтернативой электромагнитным, они представляет собой модульное полупроводниковое устройство, которое производится по гибридной технологии. В составе реле имеются транзисторы, симисторы или тиристоры. По сравнению с электромагнитными устройствами твердотельные реле обладают рядом преимуществ:

  • Долгий срок эксплуатации.
  • Быстродействие.
  • Малые размеры.
  • Отсутствуют посторонние шумы, акустические помехи, дребезги контактов.
  • Низкое потребление энергии.
  • Качественная изоляция.
  • Стойкость к вибрации и ударам.
  • Нет дугового разряда, что позволяет работать во взрывоопасных местах.

Работают по следующему принципу: подается управляющий сигнал на светодиод, происходит гальваническая развязка управляющей и коммутируемой цепей, затем сигнал переходит на фотодиодную матрицу. Напряжение регулирует силовым ключом.

Твердотельные реле также имеют несколько недостатков. Во-первых, при коммутации происходит нагрев устройства. Повышение температуры устройства приводит к ограничению регулируемого тока – при температурах, превышающих 60 градусов, уменьшается величина тока, максимальная рабочая температура 80 градусов.

Твердотельные реле классифицируются по следующим признакам:

  • Тип нагрузки – однофазные и трехфазные.
  • Способ управления – коммутация происходит за счет постоянного напряжения, переменного или ручного управления.
  • Метод коммутации: контроль перехода через ноль (применяется для слабоиндуктивных, емкостных и резистивных нагрузок), случайное включение (индуктивные и резистивные нагрузки, которым необходимо мгновенное срабатывание) и фазовое управление (изменение выходного напряжения, регулировка мощности, управление лампами накаливания).

Реле в проектах Ардуино

Наиболее распространенное реле для платы Ардуино выполняется в виде модуля, например, SONGLE SRD-05VDC. Устройство управляется напряжением 5 В, может коммутировать до 10 А 30 В DC и 10 А 250 В AC.

Схема изображена на рисунке. Реле состоит из двух не связанных между собой цепей – управляющая цепь А1 и А2 и управляемая 1, 2 и 3.

Между А1 и А2 имеется металлический сердечник. Если пустить по нему электрический ток, к нему притянется якорь (2). 1, 3 – неподвижные контакты. При отсутствии тока якорь будет около контакта 3.

Подключение реле к Ардуино

Рассмотрим одноканальный модуль реле. Он имеет всего 3 контакта, подключаются они к Ардуино Uno следующим образом: GND – GND, VCC – +5V, In – 3. Вход реле – инвертирован, так что высокий уровень на In выключает катушку, а низкий – включает.

Светодиоды нужны для индикации – при загорании красного LED1 подается напряжение на реле, при загорании зеленого LED2 происходит замыкание. Когда включается микроконтроллер, транзистор закрыт. Для его открытия на базу нужен минус, подается при помощи функции digitalWrite(pin, LOW);. Транзистор открывается, протекает ток через цепь, реле срабатывает. Чтобы его выключить, на базу подается плюс при помощи digitalWrite(pin, HIGH);.

Схема подключения лампы и внешний вид макета представлены на рисунках.

О том, как можно писать скетч для реле в ардуино мы уже писали ранее.

В этом уроке по реле Ардуино мы научимся управлять высоковольтными устройствами с помощью микроконтоллеров Arduino.

Обзор

Мы можем управлять высоковольтными электронными устройствами с помощью реле. Реле на самом деле является переключателем, который электрически приводится в действие электромагнитом. Электромагнит активируется низким напряжением, например, 5 В от микроконтроллера, и он тянет контакт, чтобы создать или разорвать цепь высокого напряжения.

Читайте также:  Если нашел телефон и не вернул владельцу

Модуль реле HL-52S для Ардуино

В качестве примера для этого урока по реле Arduino мы будем использовать 2-канальный релейный модуль HL-52S, который имеет 2 реле с номиналами 10 А при 250 и 125 В переменного тока и 10 А при 30 и 28 В постоянного тока. Выходной разъем высокого напряжения имеет 3 контакта, средний является общим контактом, и, как видно из маркировки, один из двух других контактов предназначен для нормально разомкнутого соединения, а другой — для нормально замкнутого соединения.

На одной из сторон модуля у нас есть 2 набора контактов. Первый имеет 4 контакта, заземление и контакт VCC для питания модуля и 2 входных контакта In1 и In2. Второй набор контактов имеет 3 контакта с перемычкой между JDVcc и контактом Vcc.

Комплектующие

Компоненты, необходимые для этого урока мы перечислим ниже. Вы можете заказать все комплектующие в удобном вам интернет-магазине:

  • Модуль реле 5 В
  • Плата Arduino
  • Макетная плата и провода-перемычки
  • Кабель, вилка, розетка

Принципиальная схема

Для лучшего понимания работы с реле Ардуино давайте рассмотрим принципиальную схему релейного модуля в этой конфигурации. Таким образом, мы можем видеть ниже, что 5 вольт от нашего микроконтроллера, подключенного к выводу Vcc для активации реле через оптрон, также подключены к выводу JDVcc, который питает электромагнит реле. Таким образом, в этом случае мы не получили изоляции между реле и микроконтроллером.

Чтобы изолировать микроконтроллер от реле, нам нужно снять перемычку и подключить отдельный источник питания для электромагнита к JDVcc и контакту заземления. Теперь с этой конфигурацией микроконтроллер не имеет физического соединения с реле, он просто использует светодиодную подсветку ИС оптопары для активации реле.

Есть еще одна вещь, которую следует отметить в этой принципиальной схеме. Входные контакты модуля работают в обратном порядке. Как мы видим, реле будет активировано, когда входной контакт будет НИЗКИМ, потому что таким образом ток сможет течь от VCC к входному контакту, который является низким или заземленным, светодиод загорится и активирует реле. Когда входной вывод будет ВЫСОКИМ, ток не будет течь, поэтому светодиод не загорится и реле не будет активировано.

Как использовать релейный модуль с устройствами высокого напряжения

Сначала давайте посмотрим на принципиальную схему. Как описано ранее, мы будем использовать адаптер 5 В в качестве отдельного источника питания для электромагнита, подключенного к JDVcc и заземляющему выводу. Вывод Arduino 5V будет подключен к выводу Vcc модуля, а вывод 7 к входному выводу In1 для управления реле. Теперь для части "высокое напряжение" нам понадобится вилка, розетка и кабель с двумя проводами. Один из двух проводов будет обрезан и подключен к общему и нормально разомкнутому контакту выходного разъема модуля. Таким образом, в этой конфигурации, когда мы активируем реле, мы получим замкнутую и рабочую высоковольтную цепь.

Ниже коснемся того, как сделать кабель. Нам нужны вилка, розетка и кабель. Аккуратно обрезаем кабель и обрезаем один из проводов, как показано на рисунке ниже. Подключаем их к нормально разомкнутым контактам релейного модуля. Также подключаем концы кабеля к вилке и розетке.

Окончательный вид кабеля, готового к использованию, ниже. Прежде чем использовать кабель, убедитесь, что он работает правильно. Вы можете проверить это с помощью мультиметра или сначала проверить его при низком напряжении.

Читайте также:  Как делать заказы на алиэкспресс инструкция

Исходный код

Осталось написать простой код для нашего реле Ардуино и протестировать модуль на то, как он будет работать. Сам код достаточно простой, мы будем просто использовать контакт 7 для управления реле, поэтому мы определим его как выход и создадим программу, которая будет просто активировать и деактивировать реле каждые 3 секунды. Здесь я еще раз упомяну, что вход модуля работает обратно, поэтому низкий логический уровень на входе фактически активирует реле, и наоборот.

Были протестирована 3 устройства на основе данного примера. Сначала лампочка мощностью 100 Вт, затем настольная лампа и тепловентилятор. Все эти устройства работают на 220В. Таким образом возможно управлять любым высоковольтным устройством с помощью Arduino или любого другого микроконтроллера. И, конечно, возможности безграничны, например, мы можем управлять устройствами с помощью пульта дистанционного управления телевизора, Bluetooth, SMS, Интернета и так далее.

Мы уже знаем как управлять слабым светодиодом и даже мощным двигателем с помощью Ардуино. Но как быть, если мы задумаем управлять устройствами, подключенными к бытовой сети? Напомню, что даже небольшая настольная лампа питается от источника переменного тока с напряжением 220 Вольт. Обычный полевой транзистор, который мы использовали в схеме с двигателем уже не подойдет. Чтобы управлять мощной нагрузкой да еще и с переменным током воспользуемся реле. Это такое электромеханическое устройство, которое механическим способом замыкает цепь нагрузки с помощью электромагнита. Посмотрим на внутренности: GND

VCC In Ардуино Уно GND +5V 3

Кстати, вход реле является инвертированным. Это означает, что высокий уровень на контакте In выключит катушку реле, а низкий уровень — включит.

Принципиальная схема

4. Программа автоматического светильника

Ардуино: модуль реле : 8 комментариев

А какой резистор преобразует напряжение в 3 вольта?

резистор обычно не преобразует напряжение, а «потребляет» его.
если вы имели ввиду потребление, то оно зависит от нескольких параметров. зайдите на любой сайт расчета сопротивления резистора, там подставив параметры, можете спокойно получить ответ.

Я плохо разбираюсь, подскажите. GND — это земля, т.е. провод заземления?
Если я блок питания 5V подключаю, то GND на «-«, а VCC на «+» подключать?

Верно! Это не заземление, так в электронике обозначают «общий» провод. Так повелось, что за общий стали принимать именно минус.

Что такое NC, C и NO?

Если реле выключено, то контакт C (COM) соединен с NC (Normally connected), и не соединен c NO (Normally opened).
При подаче напряжения на катушку реле, контакт C перекидывается с NC на NO — и всё становится наоборот.

Если микроконтроллер и реле выключены, а нагрузка (лампа)
подключена к COM и NC, то нагрузка выключена. Включаем микроконтроллер, и нам сразу надо подать высокий уровень на вход реле, чтоб нагрузка не включилась на доли секунды. Как избежать низкого уровня на входе реле при включении и включении микроконтроллера? Может есть реле с не инвертируемым входом, чтоб отсутствие сигнала и низкий сигнал значило тоже самое для реле?

Модули реле обычно бывают двух типов: срабатывающие по низкому уровню и по высокому. Как раз для подобных целей. А еще есть реле, где можно самому выбирать уровень, например: https://shop.robot >

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

«>

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.