Меню Закрыть

Может ли момент инерции быть отрицательным

Содержание

Моментом инерции называется характеристика, отличающаяся от статического момента тем, что координата входит в подынтегральное выражение в квадрате (рис.4.4). Моменты инерции бывают осевые или экваториальные – формула (4.6.), полярный – (4.7) и центробежный – (4.8).

, . (4.6)

. (4.7)

. (4.8)

Если начало координат совпадает с полюсом, то ρ 2 = z 2 + y 2 , следовательно

Размерность моментов инерции – единица длины в четвёртой степени (например, см 4 ). Отметим, что осевой и полярный моменты инерции всегда положительны. Центробежный момент инерции может быть положительным или отрицательным

в зависимости от положения осей.

Рис.4.5 Очевидно, постепенно поворачивая оси, можно найти такое их положение, при котором центробежный момент инерции равен нулю. Такие оси называются главными осями инерции. Две взаимно перпендикулярные оси, из которых хотя бы одна является осью симметрии фигуры, всегда будут её главными осями инерции, поскольку в этом случае каждой положительной величине zydF соответствует такая же отрицательная по другую сторону от оси симметрии (рис.4.5) и их сумма по всей площади фигуры равна нулю. Главные оси, проходящие через центр тяжести, называются главными центральными осями. Вычислим моменты инерции прямоугольника относительно главных центральных осей (рис.4.6,а). Оси z и y – главные, т.к. они являются осями симметрии, Jzy = 0.

Для определения осевого момента инерции относительно оси z выделим элементарную площадку в виде полоски, параллельной оси z:

.

Очевидно, что для определения Jy надо поменять местами стороны прямоугольника.

Главные осевые моменты инерции прямоугольника

, . (4.10)

Вычислим полярный момент инерции круга относительно его центра, а также осевой момент инерции относительно центральной оси. При вычислении полярного момента инерции выделим элементарную площадку в виде тонкого кольца толщиной dρ (рис.4.6,б) и подсчитаем по формуле (4.7)

.

Полярный момент инерции круга

. (4.11)

Осевой момент инерции круга легко найти из выражения (4.9), учитывая, что в силу симметрии Jz = Jy . Следовательно,

. (4.12)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8910 — | 7222 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Моментами инерции сечений называются интегралы следующего вида:

– осевой момент инерции сечения относительно оси у;

– осевой момент инерции сечения относительно оси z;

– центробежный момент инерции сечения;

– полярный момент инерции сечения.

3.2.1. Свойства моментов инерции сечения

Размерность моментов инерции – [длина 4 ], обычно [м 4 ] или [см 4 ].

Читайте также:  Как из 1с выгрузить в excel накладную

Осевые и полярный моменты инерции всегда положительные. Центробежный момент инерции может быть положительным, отрицательным или равным нулю.

Оси, относительно которых центробежный момент инерции равен нулю, называются главными осями инерции сечения.

Оси симметрии всегда главные. Если из двух взаимно перпендикулярных осей хотя бы одна является осью симметрии, то обе оси главные.

Момент инерции составного сечения равен сумме моментов инерции элементов этого сечения.

Полярный момент инерции равен сумме осевых моментов инерции.

Докажем последнее свойство. В сечении с площадью А для элементарной площадки dA радиус-вектор ρ и координаты у и z (рис. 6) связаны по теореме Пифагора: ρ 2 = у 2 + z 2 . Тогда

.

Рис. 6. Связь полярных и декартовых координат

3.2.2. Моменты инерции простейших фигур

В прямоугольном сечении (рис. 7) выберем элементарную площадку dA с координатами y и z и площадью dA = dydz.

Рис. 7. Прямоугольное сечение

Осевой момент инерции относительно оси у

.

Аналогично получаем момент инерции относительно оси z:

Поскольку у и z – оси симметрии, то центробежный момент Dzy = 0.

Для круга диаметром d вычисления упрощаются, если учесть круговую симметрию и использовать полярные координаты. Возьмем в качестве элементарной площадки бесконечно тонкое кольцо с радиусом ρ и толщиной dρ (рис. 8). Его площадь dA = 2πρdρ. Тогда полярный момент инерции:

.

Рис. 8. Круглое сечение

Как показано выше, осевые моменты инерции относительно любой центральной оси одинаковы и равны

.

Момент инерции кольца находим как разность моментов инерции двух кругов – наружного (с диаметром D) и внутреннего (с диаметром d):

Момент инерции Izтреугольникаопределим относительно оси, проходящей через центр тяжести (рис. 9). Очевидно, ширина элементарной полоски, находящейся на расстоянииуот осиz, равна

Рис. 9. Треугольное сечение

3.3. Зависимости между моментами инерции относительно параллельных осей

При известных величинах моментов инерции относительно осей z и у определим моменты инерции относительно других осей z1 и y1, параллельных заданным. Пользуясь общей формулой для осевых моментов инерции, находим

Если оси z и y центральные, то , и

Из полученных формул видно, что моменты инерции относительно центральных осей (когда ) имеют наименьшие значения по сравнению с моментами инерции относительно любых других параллельных осей.

3.4. Главные оси и главные моменты инерции

При повороте осей на угол α центробежный момент инерции становится равным

.

Определим положение главных главных осей инерции u, v относительно которых

,

где α – угол, на который надо развернуть оси y и z, чтобы они стали главными.

Читайте также:  Деление многочлена на многочлен столбиком с остатком

Поскольку формула дает два значения углаи, то существуют две взаимно перпендикулярные главные оси. Ось максимума всегда составляет меньший угол () с той из осей (z или y), относительно которой осевой момент инерции имеет большее значение. Напомним, что положительные углы откладываются от оси z против хода часовой стрелки.

Моменты инерции относительно главных осей называются главными моментами инерции. Можно показать, что они

.

Знак плюс перед вторым слагаемым относится к максимальному моменту инерции, знак минус – к минимальному.

Центробежный момент инерции тела

Допустим, что имеется система координат с началом в точке O и осями OX; OY; OZ. По отношению к данным осям центробежными моментами инерции (произведениями инерции) называются величины , которые определяются равенствами:

где – массы материальных точек, на которые разбивают тело; – координаты соответствующих материальных точек.

Центробежный момент инерции обладает свойством симметрии, это следует из его определения:

Если тело можно считать сплошным (непрерывным), то определение центробежного момента инерции записывают как:

Центробежные моменты тела могут быть положительными и отрицательными, при определённом выборе осей OXYZ они могут обращаться в ноль.

Для центробежных моментов инерции существует аналог теоремы Штейнберга. Если рассмотреть две системы координат: и . Одна из этих систем имеет начало координат в центе масс тела (точка C), оси систем координат являются попарно параллельными (). Пусть в системе координат координатами центра масс тела являются (), тогда:

где – масса тела.

Главные оси инерции тела

Пусть однородное тело имеет ось симметрии. Построим координатные оси так, чтобы ось OZ была направлена вдоль оси симметрии тела. Тогда, как следствие симметрии каждой точке тела с массой и координатами соответствует точка, имеющая другой индекс, но такую же массу и координаты: . В результате получаем, что:

так как в данных суммах все слагаемые имеют свою равную по величине, но противоположную по знаку пару. Выражения (4) эквивалентны записи:

Мы получили, что осевая симметрия распределения масс по отношению к оси OZ характеризуется равенством нулю двух центробежных моментов инерции (5), которые содержат среди своих индексов наименование этой оси. В таком случае ось OZ называется главной осью инерции тела для точки О.

Главная ось инерции не всегда является осью симметрии тела. Если тело обладает плоскостью симметрии, то любая ось, которая перпендикулярна этой плоскости, является главной осью инерции для точки O, в которой ось пересекает рассматриваемую плоскость. Равенства (5) отображают условия того, что ось OZ является главной осью инерции тела для точки O (начала координат). Если выполняются условия:

Читайте также:  181 См в футах

то ось OY будет для точки O главной осью инерции.

В том случае, если выполняются равенства:

то все три координатные оси системы координат OXYZ являются главными осями инерции тела для начала координат.

Моменты инерции тела по отношению к главным осям инерции называются главными моментами инерции тела. Главные оси инерции, которые построены для центра масс тела, носят название главных центральных осей инерции тела.

Если тело обладает осью симметрии, то она является одной из главных центральных осей инерции тела, поскольку центр масс находится на этой оси. В том случае, если тело имеет плоскость симметрии, то ось, нормальная к этой плоскости и проходящая через центр масс тела является одной из главных центральных осей инерции тела.

Понятие главных осей инерции в динамике твердого тела имеет существенное значение. Если вдоль них направить оси координат OXYZ, то все центробежные моменты инерции становятся равными нулю, при этом значительно упрощаются формулы, которые следует применять при решении задач динамики. С понятием о главных осях инерции связано решение задач о динамическом уравнении тела находящегося во вращении и о центре удара.

Момент инерции тела ( и центробежный в том числе) в международной системем единиц измеряются в:

Центробежный момент инерции сечения

Центробежным моментом инерции сечения (плоской фигуры) относительно двух взаимно нормальных осей (OX и OY) называют величину, равную:

выражение (8) говорит о том, что центробежный момент инерции сечения относительно взаимно перпендикулярных осей есть сумма произведений элементарных площадок () на расстояния от них до рассматриваемых осей, по всей площади S.

Единицей измерения моментов инерции сечения в СИ является:

Центробежный момент инерции сложного сечения по отношению к любым двум взаимно нормальным осям равен сумме центробежных моментов инерции составляющих его частей относительно этих осей.

Примеры решения задач

Задание Получите выражение для центробежного момента инерции прямоугольного сечения относительно осей (X,Y).
Решение Сделаем рисунок.

Для определения центробежного момента инерции выделим из имеющегося прямоугольника элемент его площади (рис.1) , площадь которой равна:

На первом этапе решения задачи найдем центробежный момент инерции () вертикальной полосы, имеющей высоту и ширину , которая находится на расстоянии от оси Y (учтем, что при интегрировании для всех площадок в избранной вертикальной полоске величина является постоянной):

На втором этапе решения задачи проинтегрируем, двигаясь по горизонтали, учитывая, что :

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.