Меню Закрыть

Расчет анкерного болта на выдергивание

Содержание

Анкерный болт, клиновой анкер, рамный анкер — это эффективные крепёжные изделия, которые должны прочно закрепляться в несущем основании и удерживать прикрепляемую конструкцию.

Для быстрого перехода на крепеж анкерной техники указываем доп.ссылки здесь:
клиновой анкер, анкерный болт, с гайкой и крюком, рамный анкер

Применение анкерного болта и возможные разрушения при эксплуатации

Вот только несколько примеров применения анкеров:

  • установка металлической обрешётки или других конструкций к бетонной кирпичной поверхности
  • монтаж различных элементов к стене, которая представляет из себя сэндвич из нескольких по своей структуре и плотности оснований
  • надежное крепление конструкций, на которые подразумевается воздействие как на скручивание, так и на вырывание

Подбирая тип и размер анкера, надо учитывать следующие факторы: характеристики несущей поверхности и ожидаемые нагрузки

В первом случае возможны такие разрушения, когда анкер выдергивается вместе с куском стены из-за её хрупкости. Следовательно, при монтаже надо подбирать достаточно длинный анкерный болт, который нанизывает на себя длину хрупкого материала и прочно зафиксируется в плотном (бетон, кирпич).

Например, нередко, вбив клиновой анкер на треть его длины в твердую рабочую поверхность, две третьи способны держать нагрузку от прикрепляемой конструкции (из газобетона, древесины). В то же время анкерный болт не имеет свободной длины и применяется для фиксирования, например, металлических листов до 5 мм, которые уже сами по себе создают большую нагрузку из-за удельного веса материала.

Ниже приведена таблица для расчета клинового анкера, где учитывается толщина прикрепляемого элемента и необходимая глубина анкеровки, при которой крепёж будет выдерживать соответствующую вырывающую силу.

Рис 1 — установка клеевого анкера (химия)

Подбирая тип и размер анкера, необходимо учитывать несущую поверхность основания (бетон например) и ожидаемые нагрузки.

Область применения анкерной техники: установка колонн, балки, светопрозрачных конструкций, шумо- и ветрозащитные экраны, барьерные ограждения, динамические нагрузки, бетон с трещинами (растянутая зона), ферм.

Базовый материал: газобетонные блоки. пустотелый кирпич, пенобетонный блоки, ячеистый бетон, кирпич полнотелый, бетон, натуральный камень, бетон с трещинами (растянутая зона), влажный бетон.

Рис 2 — испытания клеевого анкера (химия)

1) Гальваническое покрытие — нанесение слоя цинка 5-10 мкм электрохимическим способом. Срок службы 50 лет в неагрессивной среде, сухом влажностном режиме внутри помещения.

2) Горячее цинкование — термомеханическое покрытие цинком 40-60 мкм. Срок службы 50 лет в слабоагрессивной среде, нормальном влажностном режиме.

Закупку стали С235, С245 производить именно по ГОСТ 27772-88 "Прокат для строительных стальных конструкций". От содержания кремния и фосфора зависит толщина покрытия. Для получения покрытия 100-200 мкм необходима сталь С245 по

ГОСТ 27772-88 + предварительная обработка (зачистка сварных швов,

заусенцов и тп). Сталь С235 дает покрытие до 100 мкм.

3) Нержавеющая сталь А2 — срок службы 50 лет слабоагрессивной среде, в нормальном влажностном режиме.

4) Нержавеющая сталь А4 — срок службы 50 лет среднеагрессивной среде, во влажном режиме.

5) Термодиффузионное цинкование (покрытие HARP например) — специальное цинковое покрытие > 12 мкм. Срок службы 50 лет в среднеагрессивной среде, во влажном режиме.

От представителя завода:

— 16-20 мкм для резьбовых соединений

— выше 20 — до 40 мкм — для деталей без резьбы

Для крепления строительных материалов к наружным конструкциям зданий и сооружений, в том числе в навесных фасадных системах, могут применяться стальные анкеры и анкерные дюбели с распорным элементом из:

— углеродистой стали с защитным горячеоцинкованным покрытием, толщиной не менее 45мкм или коррозионной стали А2 — в слабоагрессивной среде и сухой или нормальной зонах влажности.

— коррозионностойкой стали А4 — в среднеагрессивной среде и влажной зоне влажности.

— коррозионностойкой стали А5 (повышенной коррозионной стойкости) — в сильноагрессивной среде и влажной зоне влажности.

Читайте также:  Как зарядить телефонную батарею без телефона

В среднеагрессивной среде и влажной зоне, допускается применять анкерные дюбели с распорным элементом из углеродистой стали с защитным горячеоцинкованным покрытием, толщиной не менее 45 мкм, если после монтажа узла крепления, головка распорного элемента будет защищена от влаги покрытием лакокрасочными материалами II и III групп, согласно СНиП 3.04.03-85, СНиП 2.03.11-85, ГОСТ 9.402-2204.

Применение в наружных конструкциях анкерных дюбелей с распорным элементом из углеродистой стали с защитным электроцинковым покрытием, не допускается.

Зона влажности и степень агрессивности воздействия окружающей среды определяются заказчиком по конкретному объекту строительства с учетом СНиП 23-02-2003 (СП 106.13330.2012 "Тепловая защита зданий") и СНиП 2.03.11-85.

Рис 3 — кронштейн с маркировкой размеров, нагрузки, вырыва анкера

P = 4500 Ньютон — весовая нагрузка

K = 0,080 метров — расстояние от отверстия до низа кронштейна (до точки кручения)

L = 0,165 метров — расстояние от основания кронштейна до оси болтового соединения

V = 2500 Ньютон — ветровая нагрузка

М = L * (P/2) = 0,165 * (4500/2) = 372 Н*м

Почему 4500/2, потому что два анкера. Нам необходимо найти вырывающую нагрузку на один анкер.

V = 2500/2 = 1250 Н — ветровая нагрузка на один анкер

Rр = M/K = 372/0,080 = 4650 Н — вырыв анкера от весовой нагрузки

R = Rp + V = 4650 + 1250 = 5900 Н = 5,9кН = 0,590 тс- нагрузка на вырыв на один анкер

Статья дана для сведения.

Механические испытания резьбовой шпильки

Механические испытания резьбовой шпильки M12:

1) класс прочности 8.8 (800МПа предел прочности, 640МПа предел текучести), оцинкованная — max 80кН = 8тс (прикладываемая (нормативная) нагрузка).

R = 80 / m = 80 / 3 = 26,7 кН- max расчетная нагрузка

2) А2-70 (А4-70), нерж., глубина анкеровки 110мм. — max 60кН = 6тс (прикладываемая (нормативная) нагрузка).

R = 60 / m = 60 / 3 = 20 кН- max расчетная нагрузка

Коэффициент надежности по материалу m=3 — для стальных и химических анкеров.

Коэффициент надежности по материалу m=5 — для фасадных анкеров.

Согласно ГОСТ Р ИСО 3506-1 2009 "Механические свойства крепежных изделий из коррозионно-стойкой нержавеющей стали"

А2-70 — класс стали Аустенитная, марка стали А2, класс прочности 70 (холоднодеформированная с пределом прочности 700МПа = 700Н/мм2)

А2-80 — класс стали Аустенитная, марка стали А2, класс прочности 80 (высокопрочная с пределом прочности 800МПа = 800Н/мм2)

Качеству и надежности крепежных систем строительных конструкций уделяется особое внимание. Во многих случаях от качества соединительного элемента зависит прочность, устойчивость, а также продолжительность безаварийной эксплуатации отдельной строительной системы или целого объекта. Одно из самых надежных и долговечных соединений – анкерное, где для крепежа применяется анкерный болт.

Описание анкерного болта

Анкерный болт – это прочный стержень из легированной стали длинной 30-200 мм, применяемый для установки в деревянные, каменные, бетонные и земляные основания.

На стержне из высоколегированной стали расположена втулка с прорезями, под которой находится гайка конической формы. Посредство закручивания гайка проходит по резьбе стержня через втулку, расширяя ее прорези.

В результате стержень надежно удерживается за счет силы трения. На конце болта находится головка для закручивания под ключ или крестовую отвертку.

Способ крепления и вид крепежного элемента подбирается посредством расчёта анкерных болтов на вырыв. При расчете учитывается сила трения, сопротивление анкера вырыву в упоре, сила адгезии при использовании для крепления специальной пасты, а также прочность соединения под действием высоких температур.

Есть несколько видов анкерных крепежей. Классический вариант фиксация болта в отверстие за счет силы трения, которая не даёт его врывать.

Для сквозного крепления тонких оснований применяется болт, у которого стержень фиксируется за счет внешнего упора с одной стороны и головки с другой. В самых сложных и ответственных случаях используется химический анкер. Резьбовая шпилька вкручивается в пасту, которой заполняется просверленной отверстие и надежно там фиксируется.

Читайте также:  Titan quest immortal throne лучшие мастерства

Виды анкеров

Они подразделяются по материалу соединяемых конструкций и виду крепежного элемента:

  • для тонких оснований из гипсокартона, ДСП, ДВП;
  • для плотных оснований из кирпича, бетона;
  • для пористых оснований из пенобетона, пеноблоков, шлакоблоков;
  • для ветхих и разрушенных оснований используются анкера для крепления в пористые структуры.

По виду крепежного элемента:

  • закладной. Под него не надо сверлить отверстие. Он монтируется перед заливкой бетона или кирпичной кладки. Закладное анкерное крепление применяется для фиксации ответственных, тяжелых конструкций, таких как колонны, фундаменты;
  • распорный. Фиксируется в плотном основании из бетона или кирпича за счет силы трения. Наконечник анкера расширяется в крепежном отверстии и надежно фиксирует стержень;
  • забивной. Фиксируется по принципу распорного. Стержень не закручивается, а забивается в крепежную гильзу;
  • клиновый. Устанавливается в заранее просверленное отверстие путем забивания. Болт забивается в отверстие, а затем муфта расклинивается;
  • рамный. Применяется для фиксации оконных рам и дверных косяков. Головка анкера полностью утапливается в тело конструкции, установка анкера «за подлицо»;
  • химический анкер. Кроме силы трений стержень удерживается в отверстие за счет адгезии цементирующей пасты и материала основания. В результате получается монолитное соединение с высокими показателями по прочности.

Расчет анкерного болта

Число анкерных крепежей на единицу строительной конструкции в нашей стране растет с каждым годом. К качеству анкерных ботов нет особых претензий.

Ведущие мировые производители крепежных систем НИИ, Fischer, Sormat и MKT зарекомендовали себя на российском рынке с положительной стороны. Они выпускают качественные элементы крепления, со всеми необходимыми сертификатами соответствия.

Проблема заключается в невозможности усредненной оценке основания. На каждой строительной площадке свои индивидуальные условия. Качество и свойства строительных и отделочных материалов сильно разнятся. Поэтому расчет анкерных болтов на выдергивание – это индивидуальная процедура для каждого конкретного случая.

Есть несколько проблем, с которыми сталкиваются российские и зарубежные проектировщики. Без их решения оценить прочность узла за весь период предполагаемой эксплуатации не представляется возможным:

  • для расчета анкера на срез или вырыв требуется сертифицированная методика. Проблема заключается в выборе. С методом статического испытания все не так плохо, есть нормативная база. С динамической системой испытаний не все так просто. Нет официальной методики динамического испытания анкерного соединения;
  • проблемы возникают с анализом полученных в результате испытаний данных. Не всегда возможно поучить показатели расчетных нагрузок на выдёргивание;
  • есть проблемы в методике подбора анкерного соединения исходя из материала крепежного основания.

Есть ряд свойств крепежей, которые зависят от качества материалов. Разработка методик испытания не требуется. Например, коррозионная стойкость анкерного болта, а также предел огнестойкости.

В работе по совершенствованию испытания анкерных соединений принимают участие фирмы-производители. Они постоянно совершенствовуют конструкцию и материал анкерных болтов, попутно создавая новые технологии монтажа, методики проведения статических и динамических испытаний, а также нормативную документацию к каждому виду анкерных болтов.

Суть любой методики заключается в определение расчетной нагрузки, которая должная быть больше фактической. Например, на анкерные болты надо подвесить фасад массой 40 кг на квадратный метр.

В результате расчеты мы получаем значение для каждого анкера 200 кг на квадратный метр. Следовательно, фасад крепить можно, анкерные боты не вырвет.

В основном для получений рекомендуемых нагрузок на анкерный бот используется европейская система статического испытания ETAG 001. Она состоит из двух этапов:

  • практическая часть. Испытание анкера на вырыв (из бетона, из кирпича, из пенобетонов, из монолита) начинается с установки нескольких образцов в основание. Затем в течение 1-3 минут анкер плавно нагружается до момента его вырыва или разрушения узла;
  • расчетная часть. Получить расчетные значения вырывающих усилий не так просто. Они зависят от совокупного действия нескольких факторов, которые не зависят друг от друга. Например, плотности установки крепежей, неоднородности основания, физических и химических характеристик основания. Поэтому для расчета применяется математический закон распределения случайных величин, который позволяет уйти от неоднородности, получив усредненное значение.
Читайте также:  Можно ли отремонтировать матрицу на жк телевизоре

Все результаты тестового испытания на вдергивание обрабатываются и заносятся в таблицу. Задача состоит в определение максимальной расчетной нагрузки.

Подбирается такая нагрузка, под действие которой разрушилось только 5% узлов анкерного соединения. Остальные 95% выдержали, их разрушение произошло при более сильной нагрузке.

В России методика испытаний и расчета отличается от европейской. У нас материал и цельная строительная конструкция испытываются по разному.

При испытании материала нагрузка увеличивается плавно, но без промежутков. Нет выдержки по времени на каждом этапе увеличения нагрузки.

Анкерный болт принято считать частью строительной конструкции. Поэтому его расчет на вырыв регламентируется ГОСТ 8829- 94 «Изделия строительные и железобетонные заводского изготовления.

Методы испытаний посредством нагружения. Правила оценки прочности и трещиностойкости». Согласно регламенту нагружение надо выполнять пошагово, с задержкой по времени на каждой ступени.

  • болт нагружается пошагово. Каждый шаг – 10% от предельного значения;
  • после каждого этапа пауза 5-10 минут;
  • в начальной и конечной стадии каждого этапа испытания измеряются деформации анкерного болта и материала вокруг него.

Полученные результаты сводятся в таблицу. Затем рассчитываются предельные рекомендуемые нагрузки для каждого вида анкера под конкретный строительный материал.

Метод динамического испытания анкеров на вырыв

Динамическое испытание анкерного соединения на вырыв характеризуется максимальными ударными (как разновидность сейсмических) нагрузками. Порядок испытания анкера на динамические нагрузки состоит из нескольких этапов:

  1. Первый этап заключается в определении предельного значения вырывающего усилия во время статического нагружения. Для этого берётся 5-10 образцов, затем они нагружается до полного вырова анкера или разрушения материала вокруг основания.
  2. Второй этап заключается в многократном динамическом нагружение образцов. Каждую минуту совершается 200-300 циклов нагрузка-разгрузка.
  3. Третий этап состоит из статического испытания на вырывание предыдущих образцов. Каждый из них ступенчато нагружается до вырова анкера или разрушения материла вокруг него. Затем эти результаты сравниваются с полученными на первом этапе динамического испытания анкерных болтов и узлов.

Динамическое испытание не обязательно проводить в районах с малой вероятностью землятресений. Это лишние затраты. Например, для монтажа подвесного фасада достаточно провести простые статические испытания прямо на строительной площадке.

Полученный результаты надо занести в акт испытания вентфасада. Затем сравнить максимальное значение вырывающих нагрузок анкера с показателями, указанными в технической документации к вентилируемому фасаду.

Если есть запас по прочности, то можно начинать монтаж. В противном случае надо выбрать другой облицовочный материал или тип анкерного болта.

Прочность и надежность узлов соединения несущей стены и каркасного профиля зависит от правильного выбора крепежных элементов. Решающим фактором в выборе является материал основания.

Анкер должен быть подобран с учетом несущей способности, подтвержденной актом испытаний анкера «на вырыв».

Перед монтажом производители анкеров проводят испытания на вырыв анкера, чтобы подобрать оптимальный анкер из своей линейки. Перед креплением кронштейнов проводим испытания на вырыв анкера.

распорный анкер для крепления кронштейнов; дюбель фасадный для теплоизоляции . Как быть в такой ситуации? Специально с целью определения качественных анкеров строителями проводятся испытания анкера на разрыв. Таким образом, осуществляется подбор анкеров.

Необходимо провести испытания на вырыв анкера, чтобы определить можно ли крепить кронштейны к основанию стены. . Существует методика проведения испытания на вырыв анкера.

Заранее нужно провести испытания на вырыв анкера, чтобы подобрать допустимый анкер в соответствии с нагрузками, передаваемыми на точку крепления. На несущие кронштейны с применением саморезов или заклепок крепят профиль из оцинкованной, нержавеющей стали или алюминия. При этом должны.

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.