Меню Закрыть

Предел при х стремящемся к минус бесконечности

Содержание

Конечный предел функции на бесконечности

Определение предела по Коши
Число a называется пределом функции f ( x ) при x стремящемся к бесконечности ( ), если
1) существует такая окрестность бесконечно удаленной точки |x| > K , на которой функция определена (здесь K – положительное число);
2) для любого, сколь угодно малого положительного числа ε > 0 , существует такое число Nε > K , зависящее от ε , что для всех x, |x| > Nε , значения функции принадлежат ε — окрестности точки a :
|f ( x ) – a| .
Предел функции на бесконечности обозначается так:
.
Или при .

Также часто используется следующее обозначение:
.

Запишем это определение, используя логические символы существования и всеобщности:
.
Здесь подразумевается, что значения принадлежат области определения функции.

Односторонние пределы

Часто встречаются случаи, когда функция определена только для положительных или отрицательных значений переменной x (точнее в окрестности точки или ). Также пределы на бесконечности для положительных и отрицательных значений x могут иметь различные значения. Тогда используют односторонние пределы.

Левый предел в бесконечно удаленной точке или предел при x стремящемся к минус бесконечности ( ) определяется так:
.
Правый предел в бесконечно удаленной точке или предел при x стремящемся к плюс бесконечности ( ) :
.
Односторонние пределы на бесконечности часто обозначают так:
; .

Бесконечный предел функции на бесконечности

Определение бесконечного предела по Коши
Предел функции f ( x ) при x стремящемся к бесконечности ( ), равен бесконечности, если
1) существует такая окрестность бесконечно удаленной точки |x| > K , на которой функция определена (здесь K – положительное число);
2) для любого, сколь угодно большого числа M > 0 , существует такое число NM > K , зависящее от M , что для всех x, |x| > NM , значения функции принадлежат окрестности бесконечно удаленной точки:
|f ( x ) | > M .
Бесконечный предел при x стремящемся к бесконечности обозначают так:
.
Или при .

С помощью логических символов существования и всеобщности, определение бесконечного предела функции можно записать так:
.

Читайте также:  Где хранится история браузера яндекс на компьютере

Аналогично вводятся определения бесконечных пределов определенных знаков, равных и :
.
.

Определения односторонних пределов на бесконечности.
Левые пределы.
.
.
.
Правые пределы.
.
.
.

Определение предела функции по Гейне

Число a (конечное или бесконечно удаленное) называется пределом функции f ( x ) в точке x :
,
если
1) существует такая окрестность бесконечно удаленной точки x , на которой функция определена (здесь или или );
2) для любой последовательности < xn > , сходящейся к x : ,
элементы которой принадлежат окрестности , последовательность < f ( xn )> сходится к a :
.

Если в качестве окрестности взять окрестность бесконечно удаленной точки без знака: , то получим определение предела функции при x стремящемся к бесконечности, . Если взять левостороннюю или правостороннюю окрестность бесконечно удаленной точки x : или , то получим определение предела при x стремящемся к минус бесконечности и плюс бесконечности, соответственно.

Определения предела по Гейне и Коши эквивалентны.

Примеры

Пример 1

Используя определение Коши показать, что
.

Введем обозначения:
.
Найдем область определения функции . Поскольку числитель и знаменатель дроби являются многочленами, то функция определена для всех x кроме точек, в которых знаменатель обращается в нуль. Найдем эти точки. Решаем квадратное уравнение. ;
.
Корни уравнения:
; .
Поскольку , то и .
Поэтому функция определена при . Это мы будем использовать в дальнейшем.

Выпишем определение конечного предела функции на бесконечности по Коши:
.
Преобразуем разность:
.
Разделим числитель и знаменатель на и умножим на –1 :
.

Итак, мы нашли, что при ,
.
Вводим положительные числа и :
.
Отсюда следует, что
при , и .

Поскольку всегда можно увеличить, то возьмем . Тогда для любого ,
при .
Это означает, что .

Пример 2

Пусть .
Используя определение предела по Коши показать, что:
1) ;
2) .

1) Решение при x стремящемся к минус бесконечности

Поскольку , то функция определена для всех x .
Выпишем определение предела функции при , равного минус бесконечности:
.

Итак, мы нашли, что при ,
.
Вводим положительные числа и :
.
Отсюда следует, что для любого положительного числа M , имеется число , так что при ,
.

Читайте также:  Как поставить собачку на клавиатуре на ноутбуке

Это означает, что .

2) Решение при x стремящемся к плюс бесконечности

Преобразуем исходную функцию. Умножим числитель и знаменатель дроби на и применим формулу разности квадратов:
.
Имеем:

.
Выпишем определение правого предела функции при :
.

Введем обозначение: .
Преобразуем разность:
.
Умножим числитель и знаменатель на :
.

Итак, мы нашли, что при ,
.
Вводим положительные числа и :
.
Отсюда следует, что
при и .

Поскольку это выполняется для любого положительного числа , то
.

Использованная литература:
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Автор: Олег Одинцов . Опубликовано: 17-05-2018

Что ты хочешь узнать?

Ответ

Сначала учтем, что поскольку у нас стремление к то х будет отрицательным. Дальше преобразуем выражение:

Теперь находим предел:

Почему -1, потому что по сути в числителе у нас явно положительное число, и после наших преобразований оно и должно им остаться. а вот знаменатель при стремлении к будет отрицательным. Если делить положительное на отрицательное, то в результате получается отрицательное.

Рассмотрим основные типы неопределенностей пределов на бесконечности с примерами решений:

  1. $ [frac<0><0>] $
  2. $ [infty — infty] $
  3. $[frac]^ <[infty]>и [1 ^ infty] $
Пример 1
Вычислить предел функции, стремящейся к бесконечности $ lim _limits frac$
Решение

Первым делом подставляем $ x o infty $ в предел, чтобы попытаться его вычислить.
$$ lim _limits frac = frac = $$

Вычисление не дало результата, так как появилась неопределенность. Чтобы устранить её, вынесем за скобки в числителе и знаменателе $x$ с наибольшей степенью.

Максимальная степень у $x^3$, поэтому вынесли именно её, а затем выполнили сокращение. Пользуясь тем, что $lim_limits frac<1> = 0$ получаем ответ.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ $$ lim _limits frac = 1 $$

Так как предел стремится к бесконечности, то подставляем её в функцию под знаком предела.

Получили неопределенность. Для избавления от неё умножим и разделим функцию под знаком предела на сопряженную к ней. Она будет отличаться только одним знаком.

По формуле разности квадратов $ (a-b)(a+b) = a^2-b^2 $ сворачиваем числитель. А знаменатель пока не трогаем.

Снова подставляем бесконечность в предел и получаем $frac<1>$, что равняется нулю. Поэтому записываем сразу ответ.

Пример 2
Решить предел с бесконечностью $lim_limits sqrt-x$
Решение
Ответ
$$ lim_limits sqrt-x = 0 $$

При подставлении $x o infty $ в предел получаем неопределенность. $$ lim_limits igg (frac<3x-4> <3x+2>igg)^frac <2>= igg[fracigg]^ <[infty]>$$

Для решения примера понадобится формула второго замечательного предела. $$lim_limits igg(1+frac<1> igg)^x = e qquad (1) $$

Из выражения, стоящего под знаком предела вычитаем единицу, чтобы его подстроить под формулу (1).

Перепишем предел из условия задачи в новом виде и подставим в него $x o infty$.

Пользуясь формулой (1) проведем вычисление лимита. В скобках перевернем дробь.

По условиями формулы второго замечательного предела (1) в скобках знаменатель дроби должен быть равен степени за скобкой. Выполним преобразование степени. Для этого умножим и разделим на $frac<3x+2><-6>$.

Остаётся сократить степень экспоненты и найти её предел.

Предел дроби равен отношению коэффициентов при старшей степени $x$.

«>

Пример 3
Решить предел на бесконечности $lim_limits igg (frac<3x-4> <3x+2>igg)^frac <2>$
Решение

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.