Меню Закрыть

Постоянная времени на графике

Содержание

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt), а значение тока в резисторе, согласно закону Ома, составит U/R, где U — напряжение заряда конденсатора.

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Интегрируем:

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = — t/RC + Const.
Выразим из него напряжение U потенцированием: U = e -t /RC * e Const .
Решение примет вид:

Здесь Const — константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону e -t /RC .

Экспонента — функция exp(x) = e x
e – Математическая константа, приблизительно равная 2.718281828.

Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U, в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения UC и определится выражением:

Тогда напряжение UC на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

При t = RC, напряжение на конденсаторе составит UC = U(1 — e -1 ) = U(1 — 1/e) .
Время, численно равное произведению RC, называется постоянной времени цепи RC и обозначается греческой буквой τ.

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 — 1/e)*100% ≈ 63,2% значения U.
За время 3τ напряжение составит (1 — 1/e 3 )*100% ≈ 95% значения U.
За время 5τ напряжение возрастёт до (1 — 1/e 5 )*100% ≈ 99% значения U.

Если к конденсатору емкостью C, заряженному до напряжения U, параллельно подключить резистор сопротивлением R, тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять UC = Ue -t/τ = U/e t/τ .

За время τ напряжение на конденсаторе уменьшится до значения U/e, что составит 1/e*100% ≈ 36.8% значения U.
За время 3τ конденсатор разрядится до (1/e 3 )*100% ≈ 5% от значения U.
За время 5τ до (1/e 5 )*100% ≈ 1% значения U.

Параметр τ широко применяется при расчётах RC-фильтров различных электронных цепей и узлов.

Замечания и предложения принимаются и приветствуются!

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt), а значение тока в резисторе, согласно закону Ома, составит U/R, где U — напряжение заряда конденсатора.

Читайте также:  Debian ярлык на рабочий стол

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Интегрируем:

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = — t/RC + Const.
Выразим из него напряжение U потенцированием: U = e -t /RC * e Const .
Решение примет вид:

Здесь Const — константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону e -t /RC .

Экспонента — функция exp(x) = e x
e – Математическая константа, приблизительно равная 2.718281828.

Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U, в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения UC и определится выражением:

Тогда напряжение UC на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

При t = RC, напряжение на конденсаторе составит UC = U(1 — e -1 ) = U(1 — 1/e) .
Время, численно равное произведению RC, называется постоянной времени цепи RC и обозначается греческой буквой τ.

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 — 1/e)*100% ≈ 63,2% значения U.
За время 3τ напряжение составит (1 — 1/e 3 )*100% ≈ 95% значения U.
За время 5τ напряжение возрастёт до (1 — 1/e 5 )*100% ≈ 99% значения U.

Если к конденсатору емкостью C, заряженному до напряжения U, параллельно подключить резистор сопротивлением R, тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять UC = Ue -t/τ = U/e t/τ .

За время τ напряжение на конденсаторе уменьшится до значения U/e, что составит 1/e*100% ≈ 36.8% значения U.
За время 3τ конденсатор разрядится до (1/e 3 )*100% ≈ 5% от значения U.
За время 5τ до (1/e 5 )*100% ≈ 1% значения U.

Параметр τ широко применяется при расчётах RC-фильтров различных электронных цепей и узлов.

Замечания и предложения принимаются и приветствуются!

Переходные процессы в электрических цепях, явления, возникающие при переходе от одного режима работы электрической цепи к другому, отличающемуся от предыдущего амплитудой, фазой, формой или частотой действующего в цепи напряжения, значениями параметров или конфигурацией цепи. П. п. возникают главным образом при коммутациях в электрических цепях и обусловлены тем, что ток, проходящий через катушку индуктивности, и напряжение на конденсаторе не могут изменяться скачком, то есть энергия электрического и магнитного полей в ёмкостных и индуктивных элементах цепи не может изменяться мгновенно.

Читайте также:  Включение удаленного рабочего стола windows 10

Теоретически П. п. длится неограниченно долго, так как напряжение и сила тока в электрической цепи после коммутации приближаются к конечному (установившемуся) значению и сила тока достигают значений, отличных от установившихся на 5—10%, что происходит за конечный, сравнительно короткий промежуток времени. Режим электрической цепи, который характеризуется постоянными или периодически изменяющимися токами и напряжениями, называется установившимся.

Простейшим примером П. п. может служить зарядка конденсатора ёмкостью С (рис.) от источника постоянного тока (аккумулятора) с эдс Е и внутренним сопротивлением r через резистор R, ограничивающий ток в цепи. Начиная с момента времени t = 0, когда замыкается ключ, ток в цепи уменьшается по экспоненциальному закону, приближаясь к нулю, а напряжение увеличивается, асимптотически стремясь к значению, равному эдс источника. Скорость изменения напряжения и тока зависит от ёмкости конденсатора и сопротивления в цепи: чем больше ёмкость и сопротивление, тем длительнее процесс зарядки. Через интервал времени t = (R + rC, называемый постоянной времени зарядки конденсатора, напряжение на его обкладках достигает значения uc = 0,63 Е,а сила тока i=0,37 Io, где Io начальная сила тока, равная отношению эдс к сопротивлению цепи. Через интервал времени 5t uc>0,99 Е, а сила тока i 2 .

Общие принципы исследования переходных процессов. Законы коммутации

Переходным режимом или переходным процессом в электрической цепи называют режим, при котором параметры элементов или параметры токов и напряжений изменяются в функции времени. Изменение параметров электрической цепи может происходить только за конечный промежуток времени, т.к. оно связано с изменением количества энергии, запасенной в электрических и магнитных полях. Однако при анализе переходных процессов обычно пренебрегают существованием электрических или магнитных полей на том или ином участке цепи, считая что ток или напряжение мгновенно изменяются на некоторую конечную величину. Процесс скачкообразного (мгновенного) изменения какого-либо параметра электрической цепи называется коммутацией. При анализе переходных процессов отсчет времени принято производить от этого момента.

Обычно процесс коммутации на электрической схеме изображается идеальным ключевым элементом.

1) в замкнутом состоянии обладает нулевым сопротивлением и эквивалентен идеальному проводнику;

Читайте также:  Чем определяется количество информации в сообщении

2)в разомкнутом состоянии обладает бесконечно большим сопротивлением и эквивалентен разрыву цепи;

3) переходит из одного состояния в другое за бесконечно малый промежуток времени (мгновенно).

Коммутация любой степени сложности может быть осуществлена тремя типами ключей — замыкающими, размыкающими и переключающими (рис. 1 а), б), и в)). Условное обозначение ключей является интуитивно понятной стилизацией механического переключателя. Иногда рядом с ключами стрелкой показывают движение подвижной части при коммутации.

На рис. 1 г) и д) показаны примеры реализации с помощью ключей мгновенного изменения сопротивления. В первом случае значение сопротивления при коммутации изменяется от r1+r2 до r2, а во втором — от r1r2/( r1+r2) до r1. Аналогично с помощью ключей можно скачкообразно изменять ток и напряжение источников. На рис. 1 е) ток I скачком изменяется от J1+J2 до J1, а на рис. 1 з) напряжение U при коммутации изменяется от E1 до E2 .

мгновенное изменение тока в индуктивности iL или напряжения на емкости uC должны создавать бесконечно большое напряжение или ток на соответствующем участке цепи, нарушающие законы Кирхгофа. Но законы Кирхгофа не могут нарушаться в принципе, т.к. они являются одной из форм закона сохранения энергии. Следовательно, скачкообразное изменение рассмотренных параметров невозможно, что формулируется в виде

законов коммутации :

I) мгновенное изменение тока в индуктивности невозможно, поэтому ток в ней до и первый момент после коммутации одинаковы, т.е. iL(0- ) = iL(0+);

II) мгновенное изменение напряжения на емкости невозможно, поэтому напряжение на ней до и в первый момент после коммутации одинаковы, т.е. uC(0- ) = uC(0+).

В теории переходных процессов под i(0- ) понимают значение некоторой величины в момент времени непосредственно предшествующий коммутации, а под i(0+) — значение этой величины в момент времени непосредственно следующий за коммутацией.

В простейшем случае переходному процессу предшествует установившийся режим и заканчивается он также установившимся режимом.

Как известно, напряжения и токи в индуктивностях и емкостях являются производными и интегралами соответствующих величин. Поэтому уравнения Кирхгофа для электрической цепи содержащей реактивные элементы будут дифференциальными или интегро-дифференциальными и задачей анализа переходных процессов является их решение.

Постоянная времени – это время, в течение которого свободная составляющая процесса уменьшается в е = 2,72 раза по сравнению с начальным значением.

Нарастание тока происходит тем быстрее, чем меньше постоянная времени .

Не нашли то, что искали? Воспользуйтесь поиском:

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.