К распределению по закону Симпсона приводит сложение двух случайных величин, подчиненных закону равной вероятности при одинаковых параметрах рассеяния. Кривая рассеяния имеет вид равнобедренного треугольника (рис. 1.27), из-за чего закон Симпсона часто называют законом треугольника.
При выборе в качестве начала отсчета случайной величины ее плотность распределения и математическое ожидание имеют следующий вид:
, (1.63)
Mx = 0 , , . (1.64)
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9137 — | 7300 — или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Функция треугольного распределения случайной величины определяется формулой:
Плотность треугольного распределения СВ находится по формуле:
Математическое ожидание — формула:
График плотности треугольного распределения случайной величины в диапазоне от -4 до 10
График плотности треугольного распределения случайной величины
График функции треугольного распределения случайной величины
Треугольное распределения является приблизительной моделью и применяется, когда недостаточно данных или они отсутствуют. Треугольный закон распределения также используется для построения сложных законов распределения.
Он характерен для случайных погрешностей цифровых приборов, в которых измеряемая величина преобразуется в пропорциональный интервал времени Тсч, называемый временем счета, а измерение этого интервала выполняется с помощью счетных импульсов стабильного генератора, имеющих период следования Т. В связи со случайным положением счетных импульсов относительно интервала Тсч, а также случайным соотношением между периодом Т и временем счета Тсч треугольный закон представляет собой композицию (объединение) двух равномерных законов с одинаковыми по величине максимальными погрешностями.
Функция распределения одномерной плотности вероятности случайных погрешностей для треугольного закона задается следующими соотношениями:
График треугольного закона распределения приведен на рисунке 20.
Математическое ожидание величины x: определяется по той же формуле, что и равномерное:
Рисунок 20 — Треугольное распределение случайной величины
Среднее квадратическое отклонение определяется по формуле: