Меню Закрыть

Вес равен силе натяжения нити

Определение и формула силы натяжения нити

Силу натяжения определяют как равнодействующую сил , приложенных к нити, равную ей по модулю, но противоположно направленную. Устоявшегося символа (буквы), обозначающего силу натяжения нет. Ее обозначают и просто и , и . Математически определение для силы натяжения нити можно записать как:

где = векторная сумма всех сил, которые действуют на нить. Сила натяжения нити всегда направлена по нити (или подвесу).

Чаще всего в задачах и примерах рассматривают нить, массой которой можно пренебречь. Ее называют невесомой.

Еще одним важной характеристикой нити при расчете силы натяжения является ее растяжимость. Если исследуется невесомая и нерастяжимая нить, то такая нить считается просто проводящей через себя силу. В том случае, когда необходимо учитывать растяжение нити, применяют закон Гука, при этом:

где k – коэффициент жесткости нити, – удлинение нити при растяжении.

Единицы измерения силы натяжения нити

Основной единицей измерения силы натяжения нити (как и любой силы) в системе СИ является: [T]=Н

Примеры решения задач

Задание. Невесомая, нерастяжимая нить выдерживает силу натяжения T=4400Н. С каким максимальным ускорением можно поднимать груз массой m=400 кг, который подвешивают на эту нить, чтобы она не разорвалась?

Решение. Изобразим на рис.1 все силы, действующие на груз, и запишем второй закон Ньютона. Тело будем считать материальной точкой, все силы приложенными к центру масс тела.

где – сила натяжения нити. Запишем проекцию уравнения (1.1) на ось Y:

Из выражения (1.2) получим ускорение:

Все данные в задаче представлены в единицах системы СИ, проведем вычисления:

м/с 2

Ответ. a=1,2м/с 2

Задание. Шарик, имеющий массу m=0,1 кг прикрепленный к нити (рис.2) движется по окружности, расположенной в горизонтальной плоскости. Найдите модуль силы натяжения нити, если длина нити l=5 м, радиус окружности R=3м.

Решение. Запишем второй закон Ньютона для сил, приложенных к шарику, который вращается по окружности с центростремительным ускорением:

Читайте также:  Удаление контакта в телеграмме

Найдем проекции данного уравнения на обозначенные на рис.2 оси X и Y:

Из уравнения (2.3) получим формулу для модуля силы натяжения нити:

Из рис.2 видно, что:

Подставим (2.5) вместо в выражение (2.4), получим:

Так как все данные в условиях задачи приведены в единицах системы СИ, проведем вычисления:

Сила натяжения нити равна сумме сил, действующих на резьбу, и напротив их в направлении.

Здесь сила растяжения нити является векторной суммой сил, действующих на нить.

Единицей измерения силы является Н (Ньютон).

Эта формула является следствием третьего закона Ньютона применительно к нити. Если некоторый вес подвешен на нитях, которые находятся в состоянии покоя, то модуль натяжения на резьбе будет равен весу этой нагрузки. Обычно в задачи входят невесомые нерастяжимые нити, которые просто тянут власть через себя, но есть задачи, когда нить растягивается под действием силы. Однако он ведет себя как весна, подчиняясь закону Гука:

Где k — жесткость резьбы, — удлинение нити.

Примеры решения проблем на тему «Натяжная сила нити»

Корпус весом 5 Н подвешен на невесомой растягивающей нити, жесткость которой . Найдите растягивающуюся нить.

Согласно условию, сила натяжения нити равна массе тела, что означает:

Протяженность нити метров.

Два стержня соединены невесомой растягивающей нитью. Сила F действует на первый стержень, приводя оба стержня в направлении, противоположном направлению от первого стержня ко второму. Силы трения, действующие на первый и второй бруски соответственно: и . Жесткость резьбы: k. Найдите удлинение нити.

Обратите внимание, что силы трения действуют на стержни в направлениях, противоположных направлению движения. Нам нужно найти значение сил, растягивающих нить, которая соединена с стержнями. Со стороны первого стержня сила действует на резьбу , поскольку направлена на сжатие нити, а F — при растяжении. Со стороны второго стержня действует сила F. Следовательно:

В любой механической системе присутствует ограниченный набор сил и взаимодействий.

Основные силы в механике:

Читайте также:  Hp deskjet 4200 драйвер

1. Закон всемирного тяготения (рис. 1):

Рис. 1. Закон всемирного тяготения

Или в случае модуля силы:

  • где
  • — сила взаимодействия между телами, обладающими массу
  • , — массы взаимодействующих тел
  • — расстояние между центрами взаимодействующих тел.

Направление: по линии, соединяющей взаимодействующие тела.

Возникает: данная сила возникает при взаимодействии любых массовых частиц (рис. 1).

Используется: в задачах, в которых одно из тел (или оба) являются планетами и/или спутниками.

2. Сила тяжести в рамках Земли (рис. 2).

Рис. 2. Сила тяжести

Представим себе, что в законе всемирного тяготения (1) взаимодействуют Земля и тело вблизи поверхности Земли.

  • — масса Земли
  • — масса тела вблизи поверхности Земли
  • — средний радиус Земли

Тогда . Т.к. масса Земли, средний радиус Земли и гравитационная постоянная — величины известные, то посчитаем:

м/ . Давайте назовём эту константу через м/ . Мы аналитически получили ускорение свободного падения.

Таким образом, сила гравитационного притяжения для тела на Земле мы можем представить как:

Направление: всегда к центру Земли.

Возникает: при взаимодействии любого тела вблизи поверхности Земли и самой Земли.

Используется: в задачах, в которых тело находится вблизи поверхности Земли.

Рис. 3. Сила нормальной реакции опоры

3. Сила нормальной реакции опоры. Данная сила возникает при взаимодействии тела с опорой (тело лежит или движется по опоре). Обычно обозначается . Направление данной силы — перпендикуляр к опоре (рис. 3).

Направление: всегда перпендикулярно опоре.

Возникает: при касании тела любой поверхности (стол, стена).

Используется: в задачах, в которых тело движется или покоится, взаимодействуя с опорой.

Рис. 4. Сила трения

4. Сила трения (рис. 4). Сила трения — сила, возникающая при движении (скольжении) одного тела относительно другого. Физически, данная сила возникает в связи с механическими «цепляниями» неоднородностей (шероховатостей) поверхностей одного тела за неоднородности другого. Данная сила всегда направлена против текущего движения (против скорости).

Для описания силы трения вводят коэффициент трения . Данный коэффициент описывает степень взаимодействия системы тело-подложка. Коэффициент имеет ограничения: . При сила трения отсутствует.

Читайте также:  Игровой тв город fast 70 золото

Также в задаче могут быть фразы «силы трения нет», «гладкая поверхность», «силами трения пренебречь». Всё это говорит об отсутствии силы трения.

Нахождению силы трения способствует соотношение:

Направление: против скорости.

Возникает: при скольжении тела относительно негладкой (шероховатой) поверхности.

Используется: в задачах, в которых тело движется (увлекается в движение) относительно поверхности (сама поверхность при этом негладкая).

Рис. 5. Сила натяжения нити

5. Сила натяжения нити. Сила натяжения нити — сила, действующая на тело со стороны привязанной к нему нити (рис. 5). Направлена всегда вдоль нити.

Направление: по линии нити.

Возникает: данная сила возникает при наличии в задаче нити.

Используется: в задачах, в которых присутствует нить (при этом за неё обычно тянут). В большинстве таких задач несколько тел связаны невесомой нерастяжимой нитью.

6. Сила растяжения/сжатия (закон Гука, сила упругости). Возникает в деформированном теле, стремится возвратить тело в изначальную форму. Направлена против деформации. Пусть тело под действием некой силы удлинилось на величину (рис. 6).

Рис. 6. Сила упругости

Тогда сила упругости, возникшая в теле:

  • где
  • — модуль Юнга (табличная величина, характеризующая материал тела)
  • — площадь поперечного сечения тела
  • — начальная длина тела.

Направление: против деформации тела.

Возникает: при деформации тела.

Используется: в задачах, где тело (пружина) деформирована. Часто деформация задаётся удлинением тела.

7. Силы, заданные задачей. В задаче может присутствовать ряд сил, которые будут описаны в тексте. Чаще всего это силы, вызывающие движение (сила тяги мотора) или тормозящие (силы сопротивления воздуха, воды).

Вывод: для огромного ряда задач на динамику, при использовании второго закона Ньютона, необходимо знать, какие силы действуют на выбранное тело. Анализируя приведенные силы, условия их возникновения и направление действия, можно легко решить поставленную задачу.

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.