Меню Закрыть

Транспортный уровень модели iso osi

Содержание

В модели OSI/ISO сетевые функции распределены между семью уровнями.

Уровень Наименование ФУНКЦИЯ
1em1 Физический Собственно кабель или физический носитель
2 Канальный Передача и прием пакетов, определение аппаратных адресов
3 Сетевой Маршрутизация и ведение учета
4 Транспортный Обеспечение корректной сквозной пересылки данных
5 Сеансовый Аутентификация и проверка полномочий
6 Представления данных Интерпретация и сжатие данных
7 Прикладной Предоставление услуг на уровне конечного пользователя: почта, регистрация и т.д.

В числе "семь" нет ничего магического, просто в разработке Эталонной модели участвовали семь комитетов, и для каждого из них был создан один уровень. Схема OSI — не просто абстрактная модель; ее сопровождает реальный набор "стандартных" протоколов. Создание системы OSI началось в первой половине 80-х годов и растянулось на многие годы. Пока комитеты ISO спорили о своих стандартах, за их спиной менялась вся концепция организации сетей и по всему миру внедрялся протокол TCP/IP.

Каждому уровню соответствуют различные сетевые операции, оборудование и протоколы.

0.1mm

Рис. 1. Семь уровней модели OSI

На рис. 1 представлена многоуровневая архитектура модели OSI. На каждом уровне выполняются определенные сетевые функции, которые взаимодействуют с функциями соседних уровней, вышележащего и нижележащего. Например, Сеансовый уровень должен взаимодействовать только с Представительным и Транспортным. Все эти функции подробно описаны.

Уровень 7, Прикладной (Application Layer), — самый верхний уровень модели OS1.

Он представляет собой окно для доступа прикладных процессов к сетевым услугам. Прикладной уровень обеспечивает доступ прикладных процессов в среде OSI. Функции прикладного уровня разделяются на две группы: общие и специальные. Первые дают средства взаимодействия, используемые различными приложениями, например, средства организации связи между прикладными процессами. Вторые обеспечивают определенные потребности конкретных приложений, например, обмен файлами, доступ к базам данных и электронную почту.

Уровень 6, Представительный (Presentation Layer),

Представительный уровень предназначен для представления данных, подлежащих передаче между прикладными объектами, представления структур данных, на которые ссылаются прикладные объекты, представлением методов, которые могут использоваться для манипулирования и обработки данных. Представительный уровень имеет дело с синтаксисом, т.е. с формальным их представлением. Семантика, т.е. способ интерпретации данных, их смысл — прерогатива только прикладного уровня. Наличие представительного уровня освобождает приложения от необходимости заботиться о проблеме общего представления данных и обеспечивает независимость от синтаксиса. Это позволяет прикладным объектам использовать любой локальный синтаксис, представительный уровень обеспечивает преобразование локальных синтаксисов в согласованный обеими прикладными объектами. Преобразования синтаксисов выполняются локально и видны для других открытых систем. В связи с этим представительные протоколы не стандартизируются.

Функции представительного уровня включают:

  1. запрос на установление сеанса;
  2. передачу данных;
  3. согласование и пересогласование выбора синтаксиса;
  4. преобразование синтаксиса, включая преобразование данных,
  5. форматирование и специальные преобразования (сжатие, шифрование/дешифрование).

Сущность второй и третьей функции заключается в следующем. Существует три варианта синтаксиса данных: синтаксис отправителя, синтаксис получателя и синтаксис, используемый объектами представительного уровня (синтаксис пердачи). Любые или два из них могут быть иденитичными. Уровень представления содержит функции, необходимое для преобразования между синтаксисом передачи и каждым из синтаксисов прикладных объектов по мере необходимости. Единого синтаксиса передачи для всей OSI не существует поэтому представительные объекты-корреспонденты согласуют синтаксис в процессе установления соединения. Представительный объект должен знать синтаксис своего прикладного объекта и согласованный синтаксис передачи. Согласование синтаксиса передачи осуществляется в процессе диалога между объектами представительного уровня либо в процессе установления соединения, либо в любое время в процессе передачи данных.

Представительный уровень отвечает за преобразование протоколов, трансляцию данных, их шифрование, смену или преобразование применяемого набора символов (кодовой таблицы) и расширение графических команд. Представительский уровень, кроме того, управляет сжатием данных для уменьшения передаваемых битов. На этом уровне в Win/DOS работает утилита, называемая редиректором (redirector). Ее назначение — переадресовать операции ввода/вывода к ресурсам сервера Lan Manager.

Уровень 5, Сеансовый (Session Layer)

Сеансовый уровень предназначен для организации и синхронизации диалога и управления обменом данными. С этой целью уровень предоставляет услуги по установлению сеансового соединения между двумя представительными объектами и поддержанию упорядоченного взаимодействия при обмене данными между ними. Для осуществления передачи данных между представительными объектами сеанс отображается на транспортное соединение и использует последнее. Сеанс может быть расторгнут сеансовыми или представительными объектами.

Функции сеансового уровня сводятся к установлению и расторжению сеансового соединения; обмену нормальными и срочными данными; управлению взаимодействием; синхронизации сеанса; восстановлению сеанса. Все эти функции тесно связаны с сеансовым сервисом, поскольку собственные, не инициированные со стороны верхнего уровня действия практически отсутствуют.

Синхронизацию между пользовательскими задачами сеансовый уровень обеспечивает посредством расстановки в потоке данных контрольных точек (chekpoints). Ta-ким образом, в случае сетевой ошибки, потребуется заново передать только данные, следующие за последней контрольной точкой. На этом уровне выполняется управление диалогом между взаимодействующими процессами, т.е. регулируется, какая из сторон осуществляет передачу, когда, как долго и т.д.

Уровень 4, Транспортный (Transport Layer)

Транспортный уровень обеспечивает прозрачную передачу данных между сеансовыми объектами и освобождает их от функций, связанных с надежной и экономически эффективной передачей данных. Уровень оптимизирует использолвание имеющихся сетевых ресурсов представляя транспортный сервис при минимальной стоимости. Оптимизация выполняется при ограничениях, накладываемых всеми взаимодействующими в пределах сети сеансовыми объектами, с одной стороны, и возможностями и параметрами сетевого сервиса, который используется транспортным уровнем, с другой. Протоколы транспортного уровня предназначены для межконцевого (point-to-point) взаимодействия, где концы определяются как транспортные объекты-корреспонденты. Транспортный уровень освобождается от маршрутизации и ретрансляции и занимается исключительно обеспечением взаимодействия между оконечными открытыми системами. Транспортные функции зависят от сетевого сервиса и включают:

  • отображения транспортного адреса на сетевой адрес;
  • мультиплексирование и рассщепление транспортных соединений на сетевые соединения;
  • установление и расторжение транспортных соединений;
  • управление потоком на отдельных соединениях;
  • обнаружение ошибок и управление качеством сервиса;
  • исправление ошибок;
  • сегментирование, блокирование и сцепление;
  • передача срочных блоков данных.

Транспортный уровень гарантирует доставку пакетов без ошибок, в той же последовательности, без потерь и дублирования. На этом уровне сообщения переупаковываются: длинные разбиваются на несколько пакетов, а короткие объединяются в один. Это увеличивает эффективность передачи пакетов по сети. На транспортном уровне узла-получателя сообщения распаковываются, восстанавливаются в первоначальном виде, и обычно посылается сигнал подтверждения приема. Транспортный уровень управляет потоком, проверяет ошибки и участвует в нии проблем, связанных с отправкой и получением пакетов.

Уровень 3, Сетевой (Network Layer)

Сетевой уровень отвечает за адресацию сообщений и перевод логических адресов и имен в физические адреса. Сетевой уровень обеспечивает установление, поддержание и разъединение сетевых соединений между системами, содержащими взаимодействующие прикладные объекты, а также предоставляет функциональные и процедурные средства для блочного обмена данными между транспортными объектами по сетевым соединениям.

Сетевой уровень определяет маршрут транспортного объекта-отправителя к транспортному бъекту-получателю и обеспечивает независимость от особенностей маршрутизации и ретрансляции, связанных с установлением и использованием данного сетевого соединения. Это тот случай, когда несколько [под]сетей используются последовательно или параллельно.

На этом уровне решаются также такие задачи и проблемы, связанные с сетевым трафиком, как коммутация пакетов, маршрутизация и перегрузки. Если сетевой адаптер маршрутизатора не может передавать большие блоки данных, посланные компьютером-отправителем, на сетевом уровне эти блоки разбиваются на меньшие. Сетевой уровень компьютера-получателя собирает эти данные в исходное состояние.

Функции сетевого уровня:

  • маршрутизация и ретрансляция;
  • организация сетевых соединений;
  • мультиплексирование сетевых соединений на канальное соединение;
  • сегментирование и блокирование;
  • обнаружение и исправление ошибок;
  • сериализация;
  • управление потоком;
  • передача срочных данных;
  • возврат к исходному состоянию.

Сетевые соединения могут иметь различную конфигурацию — от простого двух-точечного соединения до сложной комбинации подсетей с различными характеристиками. Обычно сетевые функции разделяются на подуровни. Б.м. подробно такое разделение описано в оригинальных документах ISO, описывающих модель OSI.

Читайте также:  Failed to load resource перевод на русский

Уровень 2, Канальный (Data Link Layer),

Канальный уровень осуществляет передачу кадров (frames) данных от cетевого уровня к физическому. Кадры — это логически организованная структура в которую можно помещать данные. Канальный уровень узла-получателя упаковывает сырой поток битов, поступающих от физического уровня, в кадры данных.

На рис. 3.3 представлен простой кадр данных, где идентификатор отправителя-адрес узла-отправителя, а идентификатор получателя © адрес узла-получателя. Управляющая информация используется для маршрутизации, а также указывает на тип пакета и сегментацию. Данные — собственно передаваемая информация. CRC (Избыточный циклический код) — это сведения, которые помогут выявить ошибки, что, в свою очередь, гарантирует правильный прием информации.

Канальный уровень обеспечивает функциональные и процедурные средства для установления, поддержания и расторжения канальных соединений между сетевыми объектами и передачи блоков данных. Канальное соединение (канал передачи данных) строится на одном или нескольких физических соединениях.

Канальный уровень обнаруживает и, в большинстве случаев исправляет ошибки, которые могут возникнуть на физическом уровне. Это позволяет сетевому уровню считать передачу данных по сетевому соединению фактически безошибочной. Помимо этого канальный уровень позволяет сетевому управлять взаимными соединениями физических каналов.

Обычно, когда канальный уровень посылает кадр, он ожидает со стороны получателя подтверждения приема. Канальный уровень получателя проверяет наличие возможных ошибок передачи. Кадры, поврежденные при передаче, или кадры, получение которых не подтверждено, посылаются вторично.

Функции канального уровня:

  • установление и расторжение канального соединения;
  • расщепление канального соединения на несколько физических;
  • сериализация;
  • обнаружение и исправление ошибок;
  • управление потоком;
  • управление соединением физических каналов передачи данных.

Уровень 1, Физический (Physical Layer)

Это самый нижний в модели OSI. Этот уровень осуществляет передачу неструктурированного, ©сырого© потока бит по физической среде (например, по сетевому кабелю).

Физический уровень обеспечивает механические, электрические, функциональные и процедурные средства активизации, поддержания и деактивизации физических соединений для передачи данных между канальными объектами. Функции уровня сводятся к активизации и деактивизации физического соединения, а также передачи данных.

Здесь реализуются электрический, оптический, механический и функциональный интерфейсы с кабелем. Физический уровень также формирует сигналы, которые переносят данные, поступившие от всех вышележащих уровней.

На этом уровне определяется способ соединения сетевого кабеля с платой сетевого адаптера, в частности, количество контактов в разъемах и их функции. Кроме того, здесь определяется способ передачи данных по сетевому кабелю.

Физический уровень предназначен для передачи битов (нулей и единиц) от одного компьютера к другому. Уровень отвечает за кодирование данных и синхронизацию битов, гарантируя, что переданная единица будет воспринята именно как единица, а не как ноль. Также физический уровень устанавливает длительность каждого бита и способ перевода бита в соответствующие электрические или оптические импульсы, передаваемые по сетевому кабелю.

Нижние уровни 1-й и 2-й определяют физическую среду передачи данных и сопутствующие задачи, такие, как передача битов данных через плату сетевого адаптера и кабель. Самые верхние уровни определяют, каким способом осуществляется доступ приложений к услугам связи. Чем выше уровень, тем более сложную задачу он решает.

Каждый уровень предоставляет несколько услуг (т.е. выполняет несколько операций), подготавливающих данные для доставки по сети на другой компьютер. Уровни отделяются друг от друга границами — интерфейсами. Все запросы от одного уровня (другому передаются через интерфейс. Каждый уровень использует услуги нижележащего уровня.

Взаимодействие уровней модели OSI

Задача каждого уровня — предоставление услуг вышележащему уровню, маскируя©детали реализации этих услуг. При этом каждый уровень работает таким образом, будто существует прямая связь между всеми объектами одного уровня, где бы они не находились. Эта логическая, или виртуальная, связь между одинаковыми уровнями показана на рисунке 3.2.

Next: Проект 802 Up: Сетевые модели и их Previous: Сетевые модели и их Contents Index Alex Otwagin 2002-12-16

Состояние отпатрулирована

Сетевая модель OSI — сетевая модель стека (магазина) сетевых протоколов OSI/ISO. Посредством данной модели различные сетевые устройства могут взаимодействовать друг с другом. Модель определяет различные уровни взаимодействия систем. Каждый уровень выполняет определённые функции при таком взаимодействии.

Содержание

Уровни модели OSI [ править | править код ]

Модель OSI
Уровень (layer) Тип данных (PDU [1] ) Функции Примеры
Host
layers
7. Прикладной (application) Данные Доступ к сетевым службам HTTP, FTP, POP3, WebSocket
6. Представления (presentation) Представление и шифрование данных ASCII, EBCDIC
5. Сеансовый (session) Управление сеансом связи RPC, PAP, L2TP
4. Транспортный (transport) Сегменты

Прямая связь между конечными пунктами и надёжность TCP, UDP, SCTP, PORTS Media [2]
layers
3. Сетевой (network) Пакеты (packet) Определение маршрута и логическая адресация IPv4, IPv6, IPsec, AppleTalk 2. Канальный (data link) Биты (bit)/
Кадры (frame) Физическая адресация PPP, IEEE 802.22, Ethernet, DSL, ARP, сетевая карта. 1. Физический (physical) Биты (bit) Работа со средой передачи, сигналами и двоичными данными USB, кабель («витая пара», коаксиальный, оптоволоконный), радиоканал

В литературе наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем — физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:

  • тип передающей среды (медный кабель, оптоволокно, радиоэфир и др.),
  • тип модуляции сигнала,
  • сигнальные уровни логических дискретных состояний (нули и единицы).

Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже — вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.

Каждому уровню с некоторой долей условности соответствует свой операнд — логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица — бит, на канальном уровне информация объединена в кадры, на сетевом — в пакеты (датаграммы), на транспортном — в сегменты. Любой фрагмент данных, логически объединённых для передачи — кадр, пакет, датаграмма — считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представления и прикладного уровней.

К базовым сетевым технологиям относятся физический и канальный уровни.

Прикладной уровень [ править | править код ]

Прикладной уровень (уровень приложений; англ. application layer ) — верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

  • позволяет приложениям использовать сетевые службы:
  • удалённый доступ к файлам и базам данных,
  • пересылка электронной почты;
  • отвечает за передачу служебной информации;
  • предоставляет приложениям информацию об ошибках;
  • формирует запросы к уровню представления.
  • Уровень представления [ править | править код ]

    Уровень представления (англ. presentation layer ) обеспечивает преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или шифрование/дешифрование, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

    Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.

    Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

    Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC, например, это может быть мейнфрейм компании IBM, а другая — американский стандартный код обмена информацией ASCII (его использует большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

    Читайте также:  Amazfit bip можно ли переключать музыку

    Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от доступа несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных. На этом уровне существуют и другие подпрограммы, которые сжимают тексты и преобразовывают графические изображения в битовые потоки, так, что они могут передаваться по сети.

    Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT — формат изображений, применяемый для передачи графики QuickDraw между программами.

    Другим форматом представлений является тэгированный формат файлов изображений TIFF, который обычно используется для растровых изображений с высоким разрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандарт, разработанный Объединённой экспертной группой по фотографии (Joint Photographic Expert Group); в повседневном пользовании этот стандарт называют просто JPEG.

    Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (англ. Musical Instrument Digital Interface , MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандарт MPEG, используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, и QuickTime — стандарт, описывающий звуковые и видео элементы для программ, выполняемых на компьютерах Macintosh и PowerPC.

    Сеансовый уровень [ править | править код ]

    Сеансовый уровень (англ. session layer ) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

    Транспортный уровень [ править | править код ]

    Транспортный уровень (англ. transport layer ) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приёма), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDP ограничивается контролем целостности данных в рамках одной датаграммы и не исключает возможности потери пакета целиком или дублирования пакетов, нарушение порядка получения пакетов данных; TCP обеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот, склеивая фрагменты в один пакет.

    Сетевой уровень [ править | править код ]

    Сетевой уровень (англ. network layer ) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

    Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

    Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX (Internetwork Packet Exchange, протокол межсетевого обмена), X.25 (частично этот протокол реализован на уровне 2), CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security). Протоколы маршрутизации — RIP (Routing Information Protocol), OSPF (Open Shortest Path First).

    Канальный уровень [ править | править код ]

    Канальный уровень (англ. data link layer ) предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля ошибок, которые могут возникнуть. Полученные с физического уровня данные, представленные в битах, он упаковывает в кадры, проверяет их на целостность и, если нужно, исправляет ошибки (формирует повторный запрос повреждённого кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

    Спецификация IEEE 802 разделяет этот уровень на два подуровня: MAC (англ. media access control ) регулирует доступ к разделяемой физической среде, LLC (англ. logical link control ) обеспечивает обслуживание сетевого уровня.

    На этом уровне работают коммутаторы, мосты и другие устройства. Эти устройства используют адресацию второго уровня (по номеру уровня в модели OSI).

    При разработке стеков протоколов на этом уровне решаются задачи помехоустойчивого кодирования. К таким способам кодирования относится код Хемминга, блочное кодирование, код Рида-Соломона.

    В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой. Это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI ( англ. ) , NDIS, UDI.

    Физический уровень [ править | править код ]

    Физический уровень (англ. physical layer ) — нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства (компьютера) к другому. Составлением таких методов занимаются разные организации, в том числе: Институт инженеров по электротехнике и электронике, Альянс электронной промышленности, Европейский институт телекоммуникационных стандартов и другие. Осуществляют передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.

    На этом уровне также работают концентраторы, повторители сигнала и медиаконвертеры.

    Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются: V.35, RS-232, RS-485, RJ-11, RJ-45, разъёмы AUI и BNC.

    При разработке стеков протоколов на этом уровне решаются задачи синхронизации и линейного кодирования. К таким способам кодирования относится код NRZ, код RZ, MLT-3, PAM5, Манчестер II.

    Соответствие модели OSI и других моделей сетевого взаимодействия [ править | править код ]

    Поскольку наиболее востребованными и практически используемыми стали протоколы (например TCP/IP), разработанные с использованием других моделей сетевого взаимодействия, далее необходимо описать возможное включение отдельных протоколов других моделей в различные уровни модели OSI.

    Семейство TCP/IP [ править | править код ]

    Семейство TCP/IP имеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных; UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмен датаграммами между приложениями, не гарантирующий получения данных; и SCTP, разработанный для устранения некоторых недостатков TCP, в который добавлены некоторые новшества. В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протокол ICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами.

    Семейство IPX/SPX [ править | править код ]

    В семействе IPX/SPX порты появляются в протоколе сетевого уровня IPX, обеспечивая обмен датаграммами между приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

    В качестве адреса хоста ICX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

    Критика [ править | править код ]

    В конце 90-х годов семиуровневая модель OSI критиковалась отдельными авторами. В частности, в книге «UNIX. Руководство системного администратора» Эви Немет (англ. Evi Nemeth ) писала:

    Пока комитеты ISO спорили о своих стандартах, за их спиной менялась вся концепция организации сетей и по всему миру внедрялся протокол TCP/IP.

    И вот, когда протоколы ISO были наконец реализованы, выявился целый ряд проблем:

    • эти протоколы основывались на концепциях, не имеющих в современных сетях никакого смысла;
    • их спецификации были в некоторых случаях неполными;
    • по своим функциональным возможностям они уступали другим протоколам;
    • наличие многочисленных уровней сделало эти протоколы медлительными и трудными для реализации.
    Читайте также:  Поляризационный фильтр для чего нужен

    Сейчас даже самые ярые сторонники этих протоколов признают, что OSI постепенно движется к тому, чтобы стать маленькой сноской на страницах истории компьютеров.

    Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр? Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

    Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

    Сетевая модель OSI

    В переводе с английского — базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI. Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

    Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

    Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

    Уровни OSI

    Модель содержит в себе семь упрощённых этапов:

    • Физический.
    • Канальный.
    • Сетевой.
    • Транспортный.
    • Сеансовый.
    • Представительский.
    • Прикладной.

    Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения. Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая — способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

    Перейдём к непосредственному знакомству с уровнями.

    Физический уровень

    Главная задача первого этапа — пересылка битов через физические каналы связи. Физические каналы связи — устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь. Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

    Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

    Канальный уровень

    На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы — кадры. Основная задача канального уровня — выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма. Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

    Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

    Сетевой уровень

    В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

    Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор — устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи — хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

    Транспортный уровень

    Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

    Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

    Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

    Сеансовый уровень

    Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново. Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

    Представительский уровень

    Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

    Прикладной уровень

    Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер приобретает доступ к файлам, Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

    Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

    Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!

    Рекомендуем к прочтению

    Добавить комментарий

    Ваш адрес email не будет опубликован.