Меню Закрыть

Теория вероятностей простым языком

Тео́рия вероя́тностей — раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними.

Содержание

История [ править | править код ]

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Джероламо Кардано, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей [1] . Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год) [2] .

Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний.

В XVIII веке важное значение для развития теории вероятностей имели работы Томаса Байеса, сформулировавшего и доказавшего Теорему Байеса.

В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Карл Гаусс детально исследовал нормальное распределение случайной величины (см. график выше), также называемое «распределением Гаусса».

Во второй половине XIX века значительный вклад внёс ряд европейских и русских учёных: П. Л. Чебышёв, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова.

Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

Теория вероятностей (тервер) – раздел математики, который изучает случайные события и их свойства. Ознакомиться с ней нужно, чтобы понимать, как принимать взвешенные решения. Ведь зная статистические данные и анализируя закономерности, можно «предсказать» исход события.

Я не станут грузить вас сложными формулами – желающие углубленно заняться тервером могут сделать это по книге В. Е. Гмурмана «Теория вероятностей и математическая статистика». В статье покажу простые примеры для понимания зависимых и независимых событий, расскажу о состоянии неопределенности и интуитивном знании.

Материал полезен широкому кругу читателей.

Коротко о теории вероятностей

Вероятность в зависимых событиях

Вы решаете отправить в подарок другу балык. Знаете номер дома, подъезд, этаж. Курьер просит называть номер квартиры. С мучительными усилиями вспоминаете, что в доме по три двери на площадку, но дальше – туман. Давайте рассчитаем, сможет ли курьер попасть в нужную квартиру с первого раза.

Имеем три варианта развития событий:

  1. Курьер звонит в первую (1) дверь.
  2. Курьер звонит во вторую (2) дверь.
  3. Курьер звонит в третью (3) дверь.

Но в истории участвует еще один человек: ваш друг. И событийность в его случае выглядит так:

  • Друг за первой (1) дверью.
  • Друг за второй (2) дверью.
  • Друг за третьей (3) дверью.

Прежде чем пойти дальше, введем определение вероятности – количество благоприятных исходов к вероятному числу событий.

Теперь соберем данные в таблицу (таблица 1). Всего – 9 исходов. Отметим положительные (курьеру откроет друг) – их 3. Получается, что вероятность с первого раза позвонить в дверь к нужному человеку – 3/9 или 1/3. Если вам нравится видеть вероятность в процентах, умножьте результат на 100%.

Таблица 1 – Девять исходов, три благоприятных

Читайте также:  Разница между am2 и am3

Представим, что курьер ошибся, и за дверью оказалась сногсшибательная блондинка в коротком халате. Для курьера исход положительный, для вас – нет. Поэтому считаем новую вероятность:

  1. Курьер звонит в первую (1) квартиру.
  2. Курьер звонит во вторую (2) квартиру.

То же самое с другом:

  • Друг ждет в первой (1) квартире.
  • Друг ждет во второй (2) квартире.

Теперь у нас 4 варианта и 2 – выигрышные (таблица 2). Вероятность со второго раза попасть в квартиру друга – 1/2. Она уменьшилась из-за зависимости событий: мы уже исключили неблагоприятный исход и расчёт нужно производить заново. Если курьер настолько невезуч, что промахнется во второй раз, вероятность попасть по адресу в третий раз – 100%. Опытным путем мы проверили, что за двумя предыдущими дверьми балык никто не ждет.

Таблица 2 Четыре исхода, два благоприятных

Пример с курьером — начальный уровень тервера. Он применим для бытовых нужд: предугадать вероятность побочного эффекта от антибиотиков, выбрать из разнообразия бабушкиных пирожков пирожок с повидлом и др.

На экзамене по теории вероятности советский математик и автор учебника Елена Вентцель спросила:

– Кому все понятно? Поднимите руки.

В аудитории живо взметнулся лес рук.

– Отлично! Остальные свободны, оценка – пять баллов! Поднявшие руки – останьтесь. За годы преподавания я так и не поняла большей части тервера. Рада, что вы мне все сейчас объясните.

Байка с математического факультета

Вероятность в независимых событиях

Независимые события не влияют друг на друга: количество благоприятных исходов в каждом новом событии не меняется.

Регина Тодоренко и Леся Никитюк в рамках программы «Орел и Решка» приехали в США. Обе хотят провести уик-энд «по богатому» и кидают монетку. Леся поставила на орла, Регина – на решку. Вероятность уехать на собственном авто у девушек одинакова: 1/2. На это раз повезло Лесе. Впрочем, как в следующей поездке тоже.

Регина негодует, почему тервер работает не в ее сторону

Теперь определим, могут ли независимые события происходить подряд с одним и тем же исходом. Лесе везло уже два раза и выпадал «орел». Повезет ли в третий раз? Составим список возможных исходов:

  1. Орел, орел, орел.
  2. Орел, орел, решка.
  3. Орел, решка, орел.
  4. Орел, решка, решка.
  5. Решка, орел, орел.
  6. Решка, орел, решка.
  7. Решка, решка, орел.
  8. Решка, решка, решка.

По результату видно: вероятность определенной последовательности каждый раз меньше на вероятность одного события. То есть вероятность определенной последовательности – произведение вероятностей каждого события. Если в одном событии вероятность 1/2, то в трех: 1/2*1/2*1/2=1/8.

Как человек принимает решения в состоянии неопределённости

Часть мозга, которая ответственна за оценку ситуации связана с медиаторной системой — центром мотивационных и эмоциональных процессов. Логика и эмоции часто конфликтуют между собой, поэтому решение принимается случайным образом.

У моей подруги аллергия на виноград. Но в студенчестве она не могла отказаться от бокала вина на вечеринке. Часто ее дерзость оставалась безнаказанной и организм нормально воспринимал аллерген. Реже протестовал: у подруги появлялись отеки на лице и в горле. В эти моменты ее левое полушарие отчаянно искало закономерность и просчитывало вероятность наступления аллергической реакции, правое же шептало: «Не пей, лицо распухнет!». Она могла вывести количество благоприятных исходов математическим путем и пить вино без опасений, но эмоции оказались сильней. Подруга раз и навсегда отказалась от любых продуктов с виноградом.

Хороший пример принятия решений описан в книге Млодинова «(Не) совершенная случайность». Допустим, вы отправили рассказ в четыре издательства. От каждого получили отказ. На эмоциях вы придете к мысли: рассказ ужасный! Хотя, если изучить биографии популярных писателей, может оказаться, что дело не в вас. Отказы в публикации получали Стивен Кинг, Джоан Роулинг, Виктор Франкл. Такие истории случались вовсе не из-за отсутствия у них дара: просто в одном издательстве редактор не понял тонкую философию автора, в другом – спешил домой и проставил визу не читая.

Почему интуитивное знание всегда противоречит статистике

Моя бабушка считает: в Албании убивают на каждом шагу. Хотя в стране она не была и новостей о не слышала: ей так кажется интуитивно. Наверняка и вы не раз испытывали подобное чувство. Оно называется интуитивное знание – внутреннее убеждение, что собственная оценка более правдива, чем официальные источники и статистика.

Читайте также:  Служба поддержки айфон в россии телефон бесплатно

Всего 127 убийств на 100 000 человек

Классическое исследование на тему интуитивного знания провели Даниэль Канеман и Амос Тверский. Они дали задание группе студентов: на основании портрета, оценить утверждения с таблицы как более (1 балл) и менее (8 баллов) вероятные (таблица 3).

Портрет выглядел так: «Линда, возраст – немного за 30. Умная, говорит, что думает. В колледже изучала философию. Тогда же выступала против социального неравенства, дискриминации и использования ядерного оружия. Не замужем».

Таблица 3

По портрету логично предположить, что Линда участвует в феминистском движении. Но студенты принимали решения интуитивно, что привело к ошибке. Вероятность, что Линда работает в банке и принимает участие в феминистском движении больше вероятности работы в банке.

Посмотрите на таблицу: вероятность работы в банке и увлечение феминистским движением – 4,1 балл. Но первое (работа в банке) и второе (феминистское движение) в сумме дают 8,3 балла. Согласно терверу, вероятность, что произойдут оба события не может быть выше, чем вероятность каждого события по отдельности. Главное утверждение (4,1 балла) содержит 2 события и является единым. В интуитивном решения правило тервера нарушено. Это доказывает — наши убеждения часто являются ложными.

В дальнейшем проводились множественные эксперименты, которые подтвердили догадку Канемана.

Вместо заключения

Теория вероятностей почти всегда разбивается о «случай», продиктованный убеждением или эмоцией отдельного человека. Поэтому использование ее в повседневной жизни может не оправдать ожиданий. Но выбирать вам! Хорошего дня!

Введение

Общая информация

Я все же введу пару определений, чтобы хоть немного формализовать написанное.
1) Если имеется несколько возможных случайных исходов, «равновозможных» между собой, то классическая вероятность — это отношение количества «хороших» случайных (элементарных) событий к их общему количеству. Например, если у вас есть 5 шариков, 2 из которых белые, то вероятность взять именно белый шар будет равняться 2/5.
2) Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причем появление того или иного значения этой величины до ее измерения нельзя точно предсказать. Классический пример — игральная кость. Кидая ее, можно случайно получить одно из шести возможных значений.
3) Математическое ожидание случайной величины — это сумма всех возможных ее значений, помноженных на их вероятность. Говоря простым языком, это «среднее значение» принимаемой случайной величины. Для игральной кости оно равно (1+2+3+4+5+6)*1/6=3.5. Что нам это дает? То, что кидая кость много (например 100) раз, в среднем каждый раз будет выпадать 3.5, а в сумме выпадет примерно 100*3.5=350. При увеличении количества бросков, относительная погрешность реального результата и его математического ожидания, помноженного на количество бросков, будет уменьшаться все сильнее.

Теперь суть того, что я, собственно, хотел рассказать: математические подсчеты довольно хорошо прогнозируют разные события, если они напрямую не зависят от выбора человека. Если же вмешивается антропогенный фактор, то строить какие-то планы, опираясь только на теорию вероятности нужно с осторожностью. Приведу пару простых примеров. Возможно они немного надуманные, но зато простые и понятные.

Монетка
Случай раз

Вам во время пары в универе (урока в школе, рабочего дня) стало скучно и Вы предложили соседу по парте (коллеге по работе) сыграть в следующую игру: подбрасываете монетку; если выпал орел — Ваш друг платит вам 5 рублей, если же выпала решка, то Вы платите 5 рублей. От скуки человек может и согласиться. Вы будете играть так весь день, а в конечном итоге оба останетесь практически при тех же деньгах, что были изначально. Вероятность выпадения любой стороны монетки 1/2 и, как следствие, математическое ожидание Вашего выигрыша равно нулю. Так что в среднем выигрыш/проигрыш будет в районе плюс-минус 10 рублей. Ну, может быть, немногим больше. В любом случае, для бюджета не критично.

Случай два

Ситуация та же, но вы предложили за проигрыш платить не по 5, а по 1000 рублей. Скорее всего ваш друг/коллега откажется. Ибо не хочется просто так потерять ощутимую сумму денег.

Что же изменилось? Математическое ожидание выигрыша по-прежнему равно нулю. С точки зрения математики все практически то же самое. А тут уже вмешался человеческий фактор, и Ваш план скоротать скучный день провалился.

Лотерея

Вы решили организовать лотерею. Сделали билеты ценой по 10 рублей с пятидесятипроцентным шансом выиграть 15. Математическое ожидание выигрыша равно 15*0.5=7.5 рублей, но так как билет стоит 10, получается -2.5 рубля. Да, клиенту не очень выгодно, но ведь Вы не собираетесь работать себе в убыток, правда? Однако вряд ли такая лотерея будет пользоваться популярностью. Потому что предлагается потратить 10 рублей с сомнительным шансом выиграть 15. Разница-то невелика.

Читайте также:  Восстановить видео с памяти телефона

Вы меняете условия и делаете лотерею практически благотворительной. Теперь выигрыш 25 рублей. Математическое ожидание выигрыша минус стоимость билета — 2.5 рубля! Вы даже останетесь в убытке! Но народ в большинстве своем по-прежнему не будет жаловать Вашу лотерею, ибо выигрыш немногим больше цены билета. В лотерею будут играть разве что школьники, которым не хватает мелочи на мороженное.

В то же время Ваш предприимчивый сосед тоже устраивает свою лотерею. Только он берет за билет 50 рублей, а выигрышем является автомобиль стоимостью 500000 руб. Вероятность выигрыша — 0.001%. Математическое ожидание выигрыша — 5 рублей. Минус стоимость билета, получим -45 рублей. Да лотерея соседа просто грабительна! Продав достаточно большое количество билетов, даже разыграв при этом автомобиль, он все равно знатно разбогатеет. Люди же вполне могут покупать билеты, ведь что такое 50 рублей перед перспективой получить задаром неплохой автомобиль?

Читатель может решить, что дело просто в количественном размере выигрыша. Но это далеко не обязательно. Приведу еще один довольно надуманный, но показательный пример:

Очень крупная лотерея

Вам предлагают подарок неслыханной щедрости. «Супер-лотерею». Одну из двух, на выбор. Сыграть в нее можно только один раз. В первой «лотерее» Вам гарантированно выплачивают миллион долларов. А во второй с 50% шансом Вы получите 2 миллиона, с 40% шансом миллион и с 10% шансом уйдете ни с чем. Математическое ожидание выигрыша в первой «лотерее» 1 миллион. Во второй — 1.4 миллиона. Но что же Вы выберете? Может кто-то и выберет второй вариант, но проведение опроса среди некоторого количества людей покажет, что большинство наверняка выберет первый вариант. Ведь, как говорится, лучше синица в руках… Тем более, если синица — это миллион, а во второй «лотерее» есть шанс не получить ничего. И гипотетические 2 миллиона ничего не решают.

Последний пример

Вы написали хорошее и качественное приложение для телефона. Потратили много сил и средств. Вы выставляете его в магазин по цене $9.99. Для такого качественного продукта это, вроде бы, не очень много. Да и Вам нужно окупиться и подзаработать. Но Ваше приложение никто не покупает. Люди сочли, что это дорого. Загрузки минимальны. Вы в отчаянии снижаете цену до $0.99. Фурор, люди скачивают Вашу программу только так, но денег с них идет недостаточно. Тогда Вы вновь поднимаете цену, но уже до $4.99. Да, поток скачиваний снижается относительно самой низкой цены, но все же он выше, чем вначале. И о чудо, Вы получаете вполне неплохую прибыль с Вашего продукта. С точки зрения примитивных подсчетов, количество желающих иметь эту программу всегда было одним и тем же. Однако Вы снизили цену относительно первоначальной, а прибыли увеличились. Снова чисто человеческий фактор.

Ну и что в итоге?

В итоге, с одной стороны, математические подсчеты могут дать не совсем очевидные с точки зрения математики результаты. Человек может из почти одинаковых условий выбирать строго одно, а среди нескольких предложений брать более невыгодное для себя. Почему? Так устроен человек. Выгода одного конкретного человека не всегда может быть просто так подсчитана.
С другой стороны, если смотреть с точки зрения различных фирм, корпораций и т.д., то имея множество клиентов, можно получать неплохие деньги, даже если с точки зрения математики предложение для клиента не самое выгодное. Именно поэтому существуют банки, лотереи, страховые компании. И люди берут кредиты под дикие проценты, покупают сомнительные лотерейные билеты и страхуют вещи, с которыми, скорее всего, все будет в порядке.
А значит, пытаясь применить по отношению к людям какие-то подсчеты «в тупую», мысля как робот, скорее всего, ничего путного и полезного не выйдет. Но ежели действовать с умом, представить себя на месте других людей, то можно горы свернуть и миллиарды заработать с помощью математики.

В общем, думайте как люди, но про математику тоже не забывайте.

Рекомендуем к прочтению

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code

Adblock detector