Меню Закрыть

Строение ионных каналов физиология

Содержание

Ио́нные кана́лы — порообразующие белки (одиночные либо целые комплексы), поддерживающие разность потенциалов, которая существует между внешней и внутренней сторонами клеточной мембраны всех живых клеток. Относятся к транспортным белкам. С их помощью ионы перемещаются согласно их электрохимическим градиентам сквозь мембрану. Такие комплексы представляют собой набор идентичных или гомологичных белков, плотно упакованных в липидном бислое мембраны вокруг водной поры. Каналы расположены в плазмалемме и некоторых внутренних мембранах клетки.

Через ионные каналы проходят ионы Na + (натрия), K + (калия), Cl − (хлора) и Ca 2 + (кальция). Из-за открывания и закрывания ионных каналов меняется концентрация ионов по разные стороны мембраны и происходит сдвиг мембранного потенциала.

Канальные белки состоят из субъединиц, образующих структуру со сложной пространственной конфигурацией, в которой кроме поры обычно имеются молекулярные системы открытия, закрытия, избирательности, инактивации, рецепции и регуляции. Ионные каналы могут иметь несколько участков (сайтов) для связывания с управляющими веществами.

Содержание

Типы ионных каналов [ править | править код ]

Классификация ионных каналов проводится по различным параметрам и поэтому единой унифицированной классификации для них пока не существует.

Так, возможна классификация по структуре (строению) и происхождению от однотипных генов.

По этому принципу, например, выделяют три семейства лиганд-активируемых ионных каналов [1] :

При этом в одно и то же семейство попадают ионные каналы с разной ионной селективностью, а также с рецепторами к разным лигандам. Но зато образующие эти каналы белки имеют большое сходство в строении и происхождении.

Ионные каналы также можно классифицировать по селективности в зависимости от проходящих через них ионов: натриевые, калиевые, кальциевые, хлорные, протонные (водородные).

Согласно функциональной классификации [2] , ионные каналы группируются по способам управления их состоянием на следующие виды:

  1. Неуправляемые (независимые).
  2. Потенциал-управляемые (потенциал-чувствительные, потенциал-зависимые, voltage-gated).
  3. Лиганд-управляемые (хемо-управляемые, хемочувствительные, хемозависимые, лиганд-зависимые, рецептор-активируемые).
  4. Опосредованно-управляемые (вторично-управляемые, ион-активируемые, ион-зависимые, мессенджер-управляемые, управляемые метаботропными рецепторами).
  5. Совместно-управляемые (NMDA-рецепторно-канальный комплекс). Они открываются одновременно как лигандами, так и определённым электрическим потенциалом мембраны. Можно сказать, что у них двойное управление. Пример: NMDA-рецепторно-канальный комплекс, имеющий сложную систему управления, включающую в себя 8 рецепторных участков-сайтов, с которыми могут связываться различные лиганды.
  6. Стимул-управляемые (механочувствительные, механосенситивные, активируемые растяжением (stretch) липидного бислоя, протон-активируемые, температурно-чувствительные).
  7. Актин-управляемые (актин-регулируемые, actin-regulated, actin-gated channels).
  8. Коннексоны (двойные поры).

Наиболее часто встречаются два типа каналов: ионные каналы с лиганд-зависимыми воротами (находятся, в частности, в постсинаптической мембране нервно-мышечных соединений) и ионные каналы с потенциал-зависимыми воротами. Лиганд-зависимые каналы превращают химические сигналы, приходящие к клетке, в электрические; они необходимы, в частности, для работы химических синапсов. Потенциал-зависимые каналы нужны для распространения потенциала действия.

Работа ионных каналов [ править | править код ]

Неуправляемые (независимые) ионные каналы [ править | править код ]

Эти каналы обычно находятся в открытом состоянии и постоянно пропускают через себя ионы за счёт диффузии по градиенту их концентрации и/или по электрическому градиенту зарядов по обе стороны мембраны. Некоторые неуправляемые каналы различают вещества и пропускают через себя по градиенту концентрации все молекулы меньше определённой величины, их называют «неселективные каналы» или «поры». Существуют также «селективные каналы», которые благодаря своему диаметру и строению внутренней поверхности переносят только определённые ионы. Примеры: калиевые каналы, участвующие в формировании мембранного потенциала покоя, хлоридные каналы, эпителиальные натриевые каналы, анионные каналы эритроцитов. [3]

Потенциал-зависимые ионные каналы [ править | править код ]

Эти каналы отвечают за распространение потенциала действия, они открываются и закрываются в ответ на изменение мембранного потенциала. Например, натриевые каналы. Если мембранный потенциал поддерживается на уровне потенциала покоя, натриевые каналы закрыты и натриевый ток отсутствует. Если мембранный потенциал сдвигается в положительную сторону, то натриевые каналы откроются, и в клетку начнут входить ионы натрия по градиенту концентрации. Через 0,5 мс после установления нового значения мембранного потенциала, этот натриевый ток достигнет максимума. А ещё через несколько миллисекунд падает почти до 12. Во время покоя мембранного потенциала, внутриклеточная концентрация ионов натрия 12 ммоль/литр, а внеклеточная концентрация 145 ммоль/литр. Это значит, что каналы через некоторое время закрываются вследствие инактивации, даже если клеточная мембрана остается деполяризованной. Но закрывшись, они отличаются от состояния, в котором находились до открытия, теперь они не могут открываться в ответ на деполяризацию мембраны, то есть они инактивированы. В таком состоянии они останутся до тех пор, пока мембранный потенциал не вернется к исходному значению и не пройдет восстановительный период, занимающий несколько миллисекунд.

Лиганд-зависимые ионные каналы [ править | править код ]

Эти каналы открываются, когда медиатор, связываясь с их наружными рецепторными участками, меняет их конформацию. Открываясь, они впускают ионы, изменяя этим мембранный потенциал. Лиганд-зависимые каналы почти нечувствительны к изменению мембранного потенциала. Они генерируют электрический потенциал, сила которого зависит от количества медиатора, поступающего в синаптическую щель и времени, которое он там находится.

Свойства ионных каналов [ править | править код ]

Для каналов характерна ионная специфичность. Каналы одного типа пропускают только ионы калия, другого — только ионы натрия и т. д.

Селективность — это избирательно повышенная проницаемость ионного канала для определённых ионов и пониженная для других. Такая избирательность определяется селективным фильтром — самым узким местом канальной поры. Фильтр, кроме узких размеров, может иметь также локальный электрический заряд.

Управляемая проницаемость — это способность открываться или закрываться при определённых управляющих воздействиях на канал.

Инактивация — это способность ионного канала через некоторое время после своего открытия автоматически понижать свою проницаемость даже в том случае, когда открывший их активирующий фактор продолжает действовать.

Блокировка — это способность ионного канала под действием веществ-блокаторов фиксировать какое-то одно своё состояние и не реагировать на обычные управляющие воздействия. Блокировку вызывают вещества-блокаторы, которые могут называться антагонистами, блокаторами или литиками.

Пластичность — это способность ионного канала изменять свои свойства, свои характеристики. Наиболее распространённый механизм, обеспечивающий пластичность — это фосфорилирование аминокислот канальных белков с цитоплазматической стороны мембраны ферментами-протеинкиназами.

Читайте также:  Роутер тп линк с одной антенной

Ионный канал в искусстве [ править | править код ]

У каналов одного и того же вида возможно взаимовлияние друг на друга. Так, открытие одних электроуправляемых каналов способствует активации рядом расположенных электрочувствительных каналов, в то время как открытие одного хемо- или механочувствительного канала и прохождение через него ионов практически не влияют на состояние соседних таких же каналов. Частичная деполяризация клеточной мембраны за счет активации механочувствительных каналов может привести к активации потенциалчувствительных каналов Nа+, К+ (или Cl-) и Са2+.

Ионные каналы блокируются специфическими веществами и фармакологическими препаратами, что широко используется с лечебной целью. Специфическим блокатором механочувствительных каналов является Gadolinium (Gd3+). Блокаторами различных потенциалчувствительных каналов являются разные препараты или химические вещества. Так, например, блокатором хемочувствительного (рецепторчувствительного) канала эффекторных клеток, активируемого ацетилхолином, является атропин. Потенциалзависимые Nа-каналы блокируются тетродотоксином (действует только снаружи клетки); кальциевые — двухвалентными ионами, например ионами никеля, марганца, а также верапамилом, нифедипином. Число ионных каналов на клеточной мембране огромно. Так, на 1 мкм2 насчитывают примерно 50 Nа-каналов, в среднем они располагаются на расстоянии 140 нм друг от друга. Успешное изучение ионных каналов дает возможность глубже понять механизм действия фармакологических препаратов, а значит, более успешно применять их в клинической практике. Новокаин, например, как местный анестетик снимает болевые ощущения потому, что он, блокируя Nа-каналы, прекращает проведение возбуждения по нервным волокнам.

Затраты энергии при транспорте веществ через мембрану. На процессы транспорта веществ в организме расходуется значительная часть энергии. Тем не менее транспорт веществ осуществляется весьма экономично, поскольку обычно транспорт одних частиц обеспечивает переход других, о чем свидетельствуют многие факты.

В процессе работы Nа/К-насоса энергия расходуется на перенос Na+ из клетки в окружающую ее среду, тогда как перенос К+ в клетку происходит без непосредственной затраты энергии в результате конформации белковой молекулы (Nа/К-АТФазы) после присоединения К+ к активному ее участку.

Создание концентрационного градиента ионов, являясь причиной возникновения мембранного потенциала, одновременно формирует осмотический градиент, который в свою очередь создает предпосылки направленного перемещения воды. Созданный электрический градиент принимает участие в переносе заряженных частиц, обеспечивает возникновение потенциала действия и распространение возбуждения.

Процесс перехода воды из одной области в другую, согласно закону осмоса, обеспечивает транспорт всех частиц, растворенных в ней и способных пройти через биологические фильтры (следование за растворителем). Энергия на переход воды непосредственно не затрачивается (вторичный транспорт), не затрачивается, естественно, энергия и на перенос частиц, растворенных в воде, которые следуют вместе с водой.

Натрийзависимый транспорт (транспорт неэлектролитов) требует затрат энергии на перенос Nа+ из клетки, но при этом часто диффузия Nа+ в клетку обеспечивает перемещение мембранных переносчиков, соединенных с молекулами глюкозы, аминокислот. Следовательно, глюкоза, аминокислоты могут поступать в клетку вместе с Nа+ (симпорт). Обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС также осуществляется с помощью подобного механизма. Натрийзависимый транспорт может также обеспечивать челночные движения молекул-переносчиков, которые в свою очередь транспортируют ионы Са2+, Н+ из клетки (противотранспорт, антипорт) согласно концентрационному градиенту переносчиков.

Глюкоза и аминокислоты переносятся с помощью облегченной диффузии вторично активно без непосредственной затраты энергии.

Диффузия газов в легких между воздухом и кровью, а также в тканях между кровью и интерстицием происходит вообще без затрат энергии, как и обмен ионов НСO3 и Сl- между эритроцитами и плазмой, когда кровь находится в различных тканях организма и легких. Диффузия веществ из кишечника, например глюкозы в кровь после приема с пищей, если ее концентрация в кишечнике больше, происходит согласно градиенту концентрации, на создание которого клетки организма энергию не затрачивают. Эти два случая (диффузия газов в легком, тканях и частиц — в кишечнике) являются исключением, когда транспорт в организме осуществляется вообще без затраты энергии. Однако энергия расходуется на доставку этих веществ в организм — дыхательные движения, приготовление пищи и обработка ее в пищеварительной системе.

Энергия, затрачиваемая сердцем на движение крови по сосудам, обеспечивает не только транспорт кровью всех веществ, в том числе и газов, но и образование фильтрата (движение всех частиц) в тканях организма и мочеобразование.

Таким образом, первичный транспорт нескольких ионов, главным из которых является Nа+, обеспечивает перенос подавляющего большинства веществ в организме.

Все виды транспорта играют жизненно важную роль в процессе жизнедеятельности клеток и организма в целом. В частности, транспорт ионов обеспечивает формирование мембранных потенциалов клеток мышечной и нервной тканей, одной из функций последней является регуляция различных систем организма.

Согласно современным представлениям биологические мембраны образуют наружную оболочку всех живых клеток. Одним из главных структурных признаков является то, что мембраны всегда образуют замкнутые пространства. Этот факт помогает выполнять им важнейшие функции:

Барьерная (создание концентрационных градиентов, что препятствует свободной диффузии веществ). Это обеспечивает создание потенциала покоя, генерацию потенциала действия.

Регуляторная (тонкая регуляция внутриклеточного содержимого и внутриклеточных реакций за счет рецепции БАВ, что приводит к изменению активности ферментативных систем мембраны и запуску механизмов вторичных месенджеров (посредников).

Преобразование энергии раздражителя в электрические сигналы (в рецепторах).

Высвобождение нейромедиаторов в синоптических окончаниях.

Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых варьирует у разных типов клеток. В настоящее время наиболее признана жидкостно-мозаичная модель клеточной мембраны.

Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул. При этом гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу, что способствует для образования раздела двух фаз: вне- и внутриклеточной. В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции:

Читайте также:  K9n neo v2 инструкция подключения

образуют ионные каналы,

являются мембранными насосами,

переносят ионы и молекулы.

Общее представление о структуре и функциях ионных каналов.

Ионные каналы — особые образования в мембране клетки, представляющие собой олигомерные (состоящие из нескольких субъединиц) белки. Центральным образованием канала является молекула белка, которая пронизывает мембрану таким образом, что в ее гидрофильном центре формируется канал-пора, через которую в клетку способны проникать соединения, диаметр которых не превышает диаметра поры (обычно- это ионы).

Вокруг главной субъединицы канала располагается система из нескольких субъединиц, которые формируют участки для взаимодействия с мембранными регуляторными белками, различными медиаторами, а также фармакологически активными веществами.

Классификация ионных каналов по их функциям:

1) по количеству ионов, для которых канал проницаем, каналы делят на селективные (проницаемы только для одного вида ионов) и неселективные (проницаемы для нескольких видов ионов);

2) по характеру ионов, которые они пропускают на Na + , Ca ++ , Cl — , K + -каналы;

3) по способу регуляции делятся на потенциалзависимые и потенциалнезависимые. Потенциалзависимые каналы реагируют на изменение потенциала мембраны клетки, и при достижении потенциалом определенной величины, канал переходит в активное состояние, начиная пропускать ионы по их градиенту концентрации. Так, натриевые и быстрые кальциевые каналы являются потенциалзависимыми, их активация происходит при снижении мембранного потенциала до -50-60 мВ, при этом ток ионов Na + и Ca ++ в клетку вызывает падение потенциала покоя и генерацию ПД. Калиевые потенциалзависимые каналы активируются при развитии ПД и, обеспечивая ток ионов К + из клетки, вызывают реполяризацию мембраны.

Потенциалнезависимые каналы реагируют не на изменение мембранного потенциала, а на взаимодействие рецепторов, с которыми они взаимосвязаны, и их лигандов. Так, Cl — -каналы связаны с рецепторами g-аминомасляной кислоты и при взаимодействии этих рецепторов с ней они активируются и обеспечивают ток ионов хлора в клетку, вызывая ее гиперполяризацию и снижение возбудимости.

3. Мембранный потенциал покоя и его происхождение.

Термином «мембранный потенциал покоя» принято называть трансмембранную разность потенциалов, существующую между цитоплазмой и окружающим клетку наружным раствором. Когда клетка (волокно) находится в состоянии физиологического покоя, ее внутренний заряд отрицателен по отношению к наружному, условно принимаемому за нуль. У разных тканей мембранный потенциал характеризуется разной величиной: самый большой у мышечной ткани -80 -90 мВ, у нервной -70 мВ, у соединительной -35 -40 мВ, у эпителиальной -20мВ.

Образование МПП зависит от концентрации ионов К + , Nа + , Са 2+ , Сl — , и от особенностей строение мембраны клетки. В частности, ионные каналы, имеющиеся в мембране, обладают свойствами:

1. Селективностью (избирательной проницаемостью)

В состоянии покоя натриевые каналы все закрыты, а большинство калиевых – открыты. Каналы могут открываться и закрываться. В мембране существуют каналы утечки (неспецифические), которые проницаемы для всех элементов, но более проницаемы для калия. Калиевые каналы всегда открыты, и ионы движутся через эти каналы по концентрационному и электрохимическому градиенту.

Согласно мембранно-ионной теории наличие МПП обусловлено:

непрерывным движением ионов по ионным каналам мембраны,

постоянно существующей разностью концентраций катионов по обе стороны мембраны,

непрерывной работой натрий-калиевого насоса.

различной проницаемостью каналов для этих ионов.

Ионов К + много в клетке, снаружи его мало, Nа + — наоборот, много вне клетки и мало в клетке. Ионов Сl — чуть больше снаружи клетки, чем внутри. Внутри клетки много органических анионов, которые в основном и обеспечивают отрицательный заряд внутренней поверхности мембраны.

В состоянии покоя мембрана клетки проницаема только для ионов К + . Ионы калия в состоянии покоя постоянно выходят в окружающую среду, где высокая концентрация Nа + . Поэтому, в состоянии покоя, наружная поверхность мембраны заряжена положительно. Высокомолекулярные органические анионы (белки) концентрируются у внутренней поверхности мембраны и определяют ее отрицательный заряд. Они же электростатически удерживают ионы К + с другой стороны мембраны. Основную роль в образовании МПП принадлежит ионам К + .

Несмотря на потоки ионов через каналы утечки разность концентрации ионов не выравнивается, т.е. сохраняется всегда постоянной. Этого не происходит потому, что в мембранах существуют Nа + — К + — насосы. Они непрерывно откачивают Nа + из клетки и против градиента концентрации вводят в цитоплазму К + . На 3 иона Nа + , которые выводятся из клетки, внутрь вводится 2 иона К + . Перенос ионов против градиента концентрации осуществляется активным транспортом (с затратой энергии). В случае отсутствия энергии АТФ клетка погибает.

Наличие потенциала покоя позволяет клетке практически мгновенно после действия раздражителя перейти из состояния функционального покоя в состояние возбуждения.

При возбуждении происходит снижение величины исходного потенциала покоя с перезарядкой мембраны. Когда внутренний заряд мембраны становится менее отрицательным наступает деполяризация мембраны и начинает развиваться потенциал действия.

4.Потенциал действия и механизм его происхождения.

Соотношение фаз возбудимости с фазами потенциала действия.

Потенциалом действия называют быстрое колебание мембранного потенциала, возникающее при возбуждении нервных, мышечных и секреторных клеток. В его основе лежат изменения ионной проницаемости мембраны. Амплитуда и характер изменений потенциала действия мало зависят от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения.

Порог раздражения – эта минимальная сила, при которой возникает минимальная ответная реакция. Для характеристики порога раздражения используется понятие реобаза (рео – ток, база – основной).

Кроме пороговых различают подпороговые раздражители, которые не могут вызвать ответной реакции, но вызывают сдвиг обмена веществ в клетке. Также существуют надрпороговые раздражители.

Возникнув, ПД распространяется вдоль мембраны, не изменяя своей амплитуды. В нем различают фазы:

а) медленная деполяризация;

б) быстрая деполяризация.

а) быстрая реполяризация;

б) медленная реполяризация (отрицательный следовой потенциал)

Гиперполяризация (положительный следовой потенциал)

«>

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.