Меню Закрыть

Стабилизированный двухполярный блок питания для унч

При разработке усилителей ЗЧ с максимальной выходной мощностью более 100 Вт первостепенноезначение приобретает необходимость получения возможно большего КПД усилителя при достаточно малых нелинейных искажениях.

Вопрос о допустимом проценте нелинейных искажений усилителя ЗЧ не раз обсуждался на страницах журнала “Радио” [1, 2], получение же высокого КПД усилителя чаще всего не уделялось должного внимания. Известно, что хороший КПД имеет выходной каскад усилителя мощности, работающий в режиме В.

Однако ему свойственны большие нелинейные искажения. В журнале “Радио” рассказывалось о коррекции таких искажений с помощью прямой связи [3]. Рассматривался и способ снижения искажений, основанный на использовании усилительных каскадов, работающих в разных режимах [4].

Технические характеристики

  • Номинальный диапазон частот, Гц – 20. 20000
  • Максимальная выходная мощность при сопротивлении нагрузки 4 Ом, Вт – 200
  • Коэффициент гармоник при выходной мощности 0,5-150Вт, %: на частоте 1 кГц – 0,1, на частоте 10 кГц – 0,15, на частоете 20 кГц – 0,2
  • КПД, % – 68
  • Номинальное входное напряжение, В – 1
  • Входное сопротивление, кОм – 10

Варианты выходных каскадов усилителя

Автором предлагается еще два варианта выходных каскадов усилителя, работающих в разных режимах и позволяющих снизить коэффициент гармоник мощного УМЗЧ. Их упрощенные электрические схемы показаны на рис. 1а и рис.16.

Скорость нарастания выходного напряжения на эквиваленте нагрузки при замкнутой накоротко катушке индуктивности, В/мкс – 10.

Рис. 1. Упрощенные электрические схемы УМЗЧ.

Каждый из усилителей состоит из двух выходных каскадов – основного и вспомогательного, включенных параллельно. Причем основной каскад работает в режиме В, а вспомогательный – в режиме АВ.

Основной каскад усилителя, показанный на рис. 1а, выполнен на транзисторах VT1, VT2, включенных по схеме комплементарного эмиттерного повторителя, работающего в режиме В. Транзисторы VТ3, VТ4 и резисторы R6. R9 образуют вспомогательный каскад,который работает в режиме АВ.

Резисторы R1 . R5 и диоды VD1, VD2 обеспечивают необходимое смещение на базах транзисторов и задают режим работы обоих каскадов.

Как видно из схемы, напряжение смещения на базах транзисторов вспомогательного каскада всегда больше, чем на базах основного каскада на величину падения напряжения на диодах VD1, VD2.

В результате с помощью изменения сопротивления резистора R4 задается напряжение смещения на базах транзисторов VТ1, VТ2, при котором каскад будет работать в режиме В. Резисторы R8, R9 создают необходимую термостабилизацию вспомогательного каскада, а резисторы R6, R7 ограничивают базовый ток транзисторов VТ3, VТ4.

При малых уровнях входного сигнала транзисторы основного каскада VТ1, VТ2 закрыты, и при этом работает только вспомогательный каскад. При этом переменный ток, поступающий в нагрузку, мал, мало и падение напряжения на резисторах R8, R9.

С ростом входного напряжения начинают открываться транзисторы VТ1, VТ2 и увеличивается ток, поступающий в нагрузку от включенных параллельно выходных каскадов. Увеличение тока, протекающего через резисторы R8, R9, приводит к росту падения напряжения на них и ограничению тока транзисторов VТ3 и VТ4.

При максимальном выходном токе, например, при положительной полуволне входного напряжения, транзистор VТ1 полностью открыт, а через транзистор VТ3 при этом протекает в нагрузку гораздо меньший ток, ограниченный в основном резистором R8 и частично R6.

Таким образом, чем больше будет сопротивление резисторов R8, R9, тем на "меньшем уровне будет ограничен максимальный ток транзисторов вспомогательного каскада, а значит, и максимальная мощность в режиме АВ, отдаваемая в нагрузку.

Как показало макетирование, сопротивление резисторов R8, R9 порядка 2. 10 Ом ограничивает максимальный ток транзисторов вспомогательного каскада на уровне 200. 40 мА.

Более сложен выходной каскад, изображенный на рис. 16. Он обеспечивает усиление как по току, так и по напряжению. В основном каскаде (VТ3, VТ4) предусматривается использование мощных составных транзисторов КТ825, КТ827. Вспомогательный каскад VТ5. VТ8 также должен быть собран на составных транзисторах.

Резисторы R1. R11, стабилитроны VD1, VD2, диоды VD3, VD4 и транзисторы VТ1, VТ2 определяют режим работы выходных каскадов, который не меняется при изменении напряжения питания в значительных пределах.

Объясняется это тем, что напряжение смещения на базах транзисторов VТ1, VТ2 поддерживается постоянными стабилитронами VD1, VD2. Работа транзисторов выходного каскада в режиме усиления тока и напряжения обеспечивает максимальный КПД выходного каскада, поскольку в этом случае напряжение насыщения транзисторов минимально, и максимальное значение амплитуды выходного сигнала приближается к напряжению питания.

Как и при коррекции искажений с использованием прямой связи, усилитель мощности, построенный по предложенным схемам, должен иметь достаточно глубокую ООС, обеспечивающую малые нелинейные искажения в широком динамическом диапазоне выходных сигналов.

Очевидно, что наилучшим образом решить эту задачу позволяют современные быстродействующие ОУ. Применив в предварительном каскаде УМЗЧ быстродействующий ОУ и построив его выходной каскад по схеме, указанной на рис. 16, удалось сконструировать усилитель.

Принципиальная схема

Принципиальная схема УМЗЧ приведена на рис. 2. Каскад предварительного усиления выполнен на быстродействующем ОУ DA1 (К544УД2Б), который наряду с необходимым усилением по напряжению обеспечивает работу усилителя с глубокой ООС.

Резистор обратной связи R5 и R1 определяют коэффициент усиления усилителя. Выходной каскад выполнен на транзисторах VТ1. VТ8. Его работа была рассмотрена выше.

Конденсаторы С6. С9 корректируют фазовую и частотную характеристики каскада. Стабилитроны VD1, VD2 стабилизируют напряжение питания ОУ, которое одновременно используется для создания необходимого напряжения смещения выходного каскада.

Делитель выходного напряжения ОУ R6, R7, диоды VD3. VD6 и резистор R4 образуют цепь нелинейной ООС, которая уменьшает коэффициент усиления ОУ, когда выходное напряжение усилителя мощности достигнет своего максимального значения.

В результате уменьшается глубина насыщения транзисторов VТ1, VТ2 и снижается вероятность возникновения сквозного тока в выходном каскаде.

Конденсаторы С4, С5 – корректирующие. С увеличением емкости конденсатора С5 растет устойчивость усилителя, но одновременно увеличиваются нелинейные искажения, особенно на высших частотах.

Рис. 2. Принципиальная схема мощного усилителя звука на ОУ и транзисторах КТ825, КТ827.

Усилитель сохраняет работоспособность при снижении напряжения питания до ±25 В. Возможно и дальнейшее снижение напряжения питания вплоть до ±15 В и даже до ±12 В при уменьшении сопротивления резисторов R2, R3 или непосредственном подключении выводов питания ОУ к общему источнику питания и исключении стабилитронов VD1, VD2.

Читайте также:  Deepcool atx tesseract bf

Снижение напряжения питания приводит к уменьшению максимальной выходной мощности усилителя прямо пропорционально квадрату изменения напряжения питания, т.е. при уменьшении напряжения питания в два раза максимальная выходная мощность усилителя уменьшается е четыре раза. Усилитель не имеет защиты от короткого замыкания и перегрузок.

Эти функции выполняет блок питания. В журнале “Радио” высказывалось мнение о необходимости питания УМЗЧ от стабилизированного источника питания для обеспечения более естественного его звучания.

Действительно, при максимальной выходной мощности усилителя пульсации напряжения не-стабилизированного источника могут достигать нескольких вольт.

При этом напряжение питания может существенно снижаться за счет разряда конденсаторов фильтра. Это незаметно при пиковых значениях выходного напряжения на высших звуковых частотах благодаря достаточной емкости фильтрующих конденсаторов, но сказывается при усилении низкочастотных составляющих большого уровня, так как в музыкальном сигнале они имеют большую длительность.

В результате фильтрующие конденсаторы успевают разряжаться, снижается напряжение питания, а значит, и максимальная выходная мощность усилителя. Если же напряжение приводит к уменьшению тока покоя выходного каскада усилителя, то это может приводить и к возникновению дополнительных нелинейных искажений.

Однако, использование завизированного источника питания, построенного по обычной схеме параметрического стабилизатора, увеличивает потребляемую мощность и требует применения сетевого трансформатора большей массы и габаритов. Помимо этого, возникает необходимость отвода тепла, рассеиваемого выходными транзисторами стабилизатора.

Причем зачастуюмощность, рассеиваемая выходными транзисторами УМЗЧ, равна мощности, рассеиваемой выходными транзисторами стабилизатора, т.е. половина мощности тратится впустую. Импульсные стабилизаторы напряжения имеют высокий КПД, но достаточно сложны в изготовлении, имеют большой уровень высокочастотных помех и не всегда надежны.

Блок питания

Если к блоку питания не предъявлять жестких требований по стабильности напряжения и уровню пульсаций, что характеризует, в частности, описанный выше усилитель мощности, то в качестве источника питания можно использовать обычный двухполярный блок питания, принципиальная схема которого показана на рис. 3.

Рис. 3. Принципиальная схема Стабилизированного двуполярного блока питания для УМЗЧ на +- 44В.

Мощные составные транзисторы VT7 и VT8, включенные по схеме эмиттерных повторителей, обеспечивают достаточно хорошую фильтрацию пульсаций напряжения питания с частотой сети и стабилизацию выходного напряжения благодаря установленным в цепи стабилитронов VD5. VD10.

Элементы L1, L2, R16, R17, С11, С12 устраняют возможность возникновения высокочастотной генерации, склонность к которой объясняется большим коэффициентом усиления по току составных транзисторов.

Величина переменного напряжения, поступающего от сетевого трансформатора, выбрана такой, чтобы при максимальной выходной мощности УМЗЧ (что соответствует току в нагрузке 4 А) напряжение на конденсаторах фильтра С1. С8 снижалось примерно до 46. 45 В. В этом случае падение напряжения на транзисторах VT7, VT8 не будет превышать 4 В, а рассеиваемая мощность транзисторами составит 16 Вт.

При уменьшении мощности, потребляемой от источника питания, увеличивается падение напряжения на транзисторах VT7, VT8, но рассеиваемая на них мощность остается постоянной из-за уменьшения потребляемого тока. Блок питания работает как стабилизатор напряжения при малых и средних токах нагрузки, а при максимальном токе – как транзисторный фильтр.

В таком режиме его выходное напряжение может снижаться до 42. 41 В, уровень пульсаций на выходе достигнет значения 200 мВ, КПД равен 90%. Как показало макетирование, плавкие предохранители не могут защитить усилитель и блок питания от перегрузок по току из-за своей инерционности.

По этой причине было применено устройство быстродействующей защиты от короткого замыкания и превышения допустимого тока нагрузки, собранное на транзисторах VT1. VT6.

Причем функции защиты при перегрузках положительной полярности выполняют транзисторы VT1, VT2, VT5, резисторы R1, R3, R5, R7. R9, R13 и конденсатор С9, а отрицательной – транзисторы VT4, VТЗ, VТ6, резисторы R2, R4, R6, R10. R12, R14 и конденсатор С10.

Рассмотрим работу устройства при перегрузках положительной полярности. В исходном состоянии при номинальной нагрузке все транзисторы устройства защиты закрыты. При увеличении тока нагрузки начинает расти падение напряжения на резисторе R7, и, если оно превысит допустимое значение, начинает открываться транзистор VТ1, а вслед за ним и транзисторы VТ2 и VТ5.

Последние уменьшают напряжение на базе регулирующего транзистора VТ7, а значит, и напряжение на выходе блока питания. При этом за счет положительной обратной связи, обеспечиваемой резистором R13, уменьшение напряжения на выходе блока питания приводит к ускорению дальнейшего открывания транзисторов VТ1, VТ2, VТ5 и быстрому закрыванию транзистора VТ7.

Если сопротивление резистора положительной обратной связи R13 мало, то после срабатывания устройства защиты напряжение на выходе блока питания не восстанавливается даже после отключения нагрузки.

В этом режиме необходимо было бы предусмотреть кнопку запуска, отключающую, например, на короткое время резистор R13 после срабатывания защиты и в момент включения блока питания.

Однако, если сопротивление резистора R13 выбрать таким, чтобы при коротком замыкании нагрузки ток не был равен нулю, то напряжение на выходе блока питания будет восстанавливаться после срабатывания устройства защиты при уменьшении тока нагрузки до безопасной величины.

Практически сопротивление резистора R13 выбирается такой величины, при которой обеспечивается надежное включение блока питания при ограничении тока короткого замыкания значением 0,1 . 0,5 А. Ток срабатывания устройства защиты определяет резистор R7. Аналогично работает устройство защиты блока питания при перегрузках отрицательной полярности.

Конструкция и детали

Все детали УМЗЧ и блока питания размещены на одной плате. Исключение составляют транзисторы VТЗ, VТ4, VТ6, VТ8 УМЗЧ, установленные на общем теплоотводе с площадью рассеиваемой поверхности 1200 см2 и транзисторы VТ7, VТ8 БП, размещенные на отдельных теплоотводах с площадью рассеивающей поверхности 300 см2 каждый.

Катушки L1, L2 блока питания (рис. 3) и L1 усилителя мощности содержат 30. 40 витков провода ПЭВ-1 диаметром 1,0 мм, намотанного на корпусе резистора С5-5 или МЛТ-2. Резисторы R7, R12 блока питания представляют собой отрезок медного провода ПЭЛ, ПЭВ-1 или ПЭЛШО диаметром 0,33 мм и длиной 150 мм, намотанного на корпусе резистора МЛТ-1.

Трансформатор питания выполнен на тороидальном магнитопроводе из электротехнической стали Э320, толщиной 0,35 мм, ширина ленты 40 мм, внутренний диаметр магнитопровода 80 мм, наружный – 130 мм. Сетевая обмотка содержит 700 витков провода ПЭЛШО диаметром 0,47 мм, вторичная – 2×130 витков провода ПЭЛШО диаметром 1,2 мм.

Читайте также:  Msiexec exe ошибка приложения

Вместо ОУ К544УД2Б можно использовать К544УД2А, К140УД11 или К574УД1. Каждый из транзисторов КТ825Г можно заменить составными КТ814Г и КТ818А, а транзистор КТ827А – составными КТ815Г и КТ819Г (что очень нежелательно). Диоды VD3. VD6 УМЗЧ можно заменить любыми высокочастотными кремниевыми диодами, VD7, VD8 – любыми кремниевыми с максимальным прямым током не менее 100 мА.

Вместо стабилитронов КС515А можно использовать соединенные последовательно стабилитроны Д814А (Б, В, Г, Д) и КС512А.

Наладка

Налаживание блока сводится к установке(подстроечным резистором R12) тока покоя выходных транзисторов VТ6, VТ8 в пределах 10. 15 мА. Включают усилитель после проверки исправности блока питания.

Для этого, заменив резисторы R7, R12 блока питания более высокоомными (примерно 0,2. 0,3 Ом), проверяют работоспособность блока питания устройства защиты.

Оно должно срабатывать при токе нагрузки 1 . 2 А. Убедившись в нормальной работе блока питания и УМЗЧ, устанавливают резисторы R7, R12 с номинальными сопротивлениями, указанными на принципиальной схеме, проверяют работу усилителя при максимальной мощности, контролируя отсутствие срабатывания устройства защиты блока питания.

А. Тычинский. РМ-08-17, 09-17.

  1. Лексины Валентин и Виктор. О заметности нелинейных искажениях усилителя мощности. – Радио, 1984, №2, с. 33.
  2. Солнцев Ю. Какой же Кг допустим? – Радио, 1985, №2, с. 26.
  3. Солнцев Ю. Высококачественный усилитель мощности. – Радио, 1984, №5, с. 29.
  4. Гумеля Е. Качество и схемотехника УМЗЧ. – Радио, 1985, №9, с. 31.

Простой стабилизированный БП для УМЗЧ.

Автор: Александр Чуреков
Опубликовано 09.12.2010

Хочу представить вашему вниманию схему стабилизированного двуполярного блока питания.
Собирая УМЗЧ на двух микросхемах TDA7294, передо мной встал вопрос какой блок питания выбрать. Со схемой помог друг Миронов А., за что ему отдельное спасибо. Стабилизацию напряжения обеспечивают две микросхемы 78L27, но их выходной ток не превышает 0,1 А, что мало для мощного усилителя. Для усиления тока служат транзисторы. Схема блока питания- доработанная типовая схема включения стабилизаторов КРЕН с внешним транзистором.
В данной схеме используется два одинаковых БП с последующим соединением в один двуполярный (трансформатор должен иметь ДВЕ вторичных обмотки, а не с отводом от середины).

В качестве диодно моста можно использовать любой мост рассчитанный на ток 5-10А (в зависимости от требуемой мощности) и обратное напряжение не менее 2Uвых. Конденсаторы С1, С7 электролитические емкостью 10000 мкФ и рассчитанные на напряжение 50-63В. Остальные конденсаторы на напряжение не меньше Uвых. Резисторы R1, R3 можно заменить перемычками. Резисторы R6, R10 использовал 100 Ом. Составной транзистор (обведен рамкой) можно заменить одним, например КТ865А, которого достаточно для питания 5 канального усилителя на TDA7294. Транзисторы необходимо установить на теплоотвод через изолирующюю прокладку. В усилителе на двух TDA2050 транзисторы установил прямо на корпус. В случае, если требуется другое выходное напряжение, следует заменить стабилизаторы на другие, с необходимым напряжением стабилизации. Если необходимых стабилизаторов нет, то можно в разрыв общего вывода стабилизатора включить стабилитрон как показано на схеме. Напряжение на стабилитроне суммируется с напряжением стабилизатора. Мной проверен БП со стабилизатором на 24В и стабилитроном 11В. Выходное напряжение при входном 29 В составило 35В. Стабилизаторы КРЕН ставить на теплоотвод не нужно. На ощупь они чуть теплые. Представленная плата разработана для диодов Д242 или аналогичных. Так как использовались не составные транзисторы, то на плате обозначено место подключения транзисторов. В этом случае R4, R8 не ставятся, а вместо R5, R9 установлены перемычки.

Прочитав данный креатив, дорогая редакция осталась в некотором недоумении – для чего козе баян усилителю мощности стабилизатор?
Мы связались с автором и вот что он нам сообщил:
Как крайний вариант, у меня дома в сети 240-250В. Ниже не бывает. и если расчитать трансформатор для 220, причем на пределе для микросхемы, при повышении напряжения в сети будет БА-БАХ:) максимально снизить просадки напряжения питания и получить максимально возможную выходную мощность не только в музыке, но и вообще всегда. Третья цель – максимально снизить пульсации напряжения питания, чтобы выжать максимум качественного звучания ( источник питания – одна из причин роста интермодуляционных искажений). Как-то так.
Ответ принимается, но дорогая редакция хочет заметить, что стабилизатор не спасет, в данном случае, от второй беды и только частично – от третьей.

Современные УМЗЧ, обладая внушительной пиковой выходной мощностью, доходящей порой до 200 Вт, предъявляют довольно жёсткие требования к своему источнику питания. Для них, как правило, необходимо двухполярное напряжение 2 X (30. 40) В при пиковом токе до 10 А в каждом плече. Обычно в выпрямителе применяют сглаживающие конденсаторы большой ёмкости, доходящей до 20000 мкФ и более. Но даже с ними просадки выпрямленного напряжения при пиковом токе нагрузки достигают 2. 3 В, что требует от УМЗЧ высокого коэффициента подавления пульсаций напряжения питания. Автор предлагает оснастить блок питания УМЗЧ стабилизатором, обеспечивающим нужное качество питающего напряжения.

В последнее время в любительских конструкциях УМЗЧ всё чаще располагают выпрямитель и блок конденсаторов большой ёмкости на плате усилителя, уменьшая этим длину соединительных проводов и падение напряжения на них. Иногда от блока питания требуют, чтобы при включении напряжение на его выходах нарастало плавно (так называемый "мягкий старт"). При возникновении различных аварийных ситуаций, например, замыкании в нагрузке УМЗЧ, неисправности его выходных транзисторов и других перегрузках питание УМЗЧ должно быть автоматически выключено. Решить все эти задачи позволяет предлагаемый стабилизатор напряжения питания.

Основные технические характеристики

Выходное стабилизированное напряжение, В. 2×35

Максимальный ток нагрузки каждого плеча, А. 9

Ток срабатывания триггерной защиты, А. 11

Полное время срабатывания защиты, мкс . 12

Время нарастания выходного напряжения от нуля до номинального значения, с. 0,36

Размах пульсаций частотой 100 Гц на выходе стабилизатора при токе нагрузки 5 А, мкВ. 80

За основу конструкции было взято устройство из статьи "Стабилизатор напряжения питания УМЗЧ" В. Орешкина ("Радио", 1987, № 8, с. 31), схема которого показана на рис. 1. Несмотря на простоту и высокие технические данные (коэффициент стабилизации более 1000, автоматическое выключение при замыкании выхода, возможность крепления силовых транзисторов непосредственно на теплоотвод без прокладок), такому стабилизатору присущи и некоторые недостатки. Он неустойчиво запускается при большом токе нагрузки, а ток при замыкании выхода не нормирован и зависит от коэффициентов передачи применённых транзисторов, что иногда приводит к их выходу из строя.

Читайте также:  Как подключить новый роутер к интернету

Рис. 1. Схема стабилизатора напряжения питания УМЗЧ

За прошедшее время появились новые электронные компоненты, стали доступны мощные полевые транзисторы, что и подвигло автора поэкспериментировать с компьютерной моделью предложенного В. Орешкиным устройства, которая была создана в симуляторе LTspice IV, и усовершенствовать его. Родившаяся в результате таких экспериментов схема блока питания изображена на рис. 2.

Рис. 2. Схема блока питания

Первым делом была изменена цепь запуска стабилизатора, а биполярные транзисторы были заменены полевыми. Из схемы, представленной на рис. 1, видно, что транзистор VT2 зашунтирован резистором R3 сопротивлением 470 Ом, через который протекает начальный ток зарядки конденсатора C2. Если нагрузка невелика, выходное напряжение начинает возрастать, пока стабилизатор не войдёт в режим стабилизации. При токе нагрузки менее I=Uвых/R3=19/470=40 мА, когда транзистор VT2 практически закрыт, все пульсации выпрямленного напряжения через резистор R3 проходят в минусовое плечо. При малом сопротивлении нагрузки тока через этот резистор может не хватить для нормального запуска стабилизатора, он может вообще не запуститься.

В новом варианте цепь запуска состоит из стабилитрона VD11 и резистора R22 в одном плече и VD12 с R23 во втором (для симметрии). В процессе включения по достижении значения напряжения на сглаживающих конденсаторах C7-C10, равного напряжению стабилизации стабилитронов VD11 и VD12, транзисторы VT 11.1 и VT11.2 начинают открываться. Вслед за ними открываются и силовые транзисторы VT9 и VT10. Напряжение на выходе стабилизатора нарастает, а напряжение между истоком и стоком транзисторов VT9 и VT10 уменьшается. Когда напряжение на стабилитронах VD11 и VD12 опустится ниже их напряжения стабилизации, ток через эти стабилитроны прекратится. Далее они не влияют на работу стабилизатора. Такой способ запуска надёжен даже при токе нагрузки 9 А. Минимальный ток нагрузки практически равен нулю.

Выходное напряжение плюсового плеча стабилизатора равно сумме напряжений стабилизации стабилитронов VD13, VD15 и напряжения отсечки транзистора VT11.1, а минусового плеча – соответственно стабилитронов VD14, VD16 и транзистора VT11.2. Для плавного запуска стабилизатора оказалось достаточно зашунтировать стабилитроны VD13-VD16 конденсаторами C23-C26. Скорость изменения выходного напряжения до начала стабилизации равна скорости нарастания напряжения на этих конденсаторах. При указанных на схеме номиналах элементов время выхода стабилизатора на режим – около 360 мс. Осциллограммы процесса его запуска, полученные на компьютерной модели, показаны на рис. 3.

Рис. 3. Осциллограммы процесса запуска

Для уменьшения рассеиваемой на транзисторах VT9 и VT10 мощности истоки транзисторов VT 11.1 и VT 11.2 соединены не с общим проводом, а с точками соединения стабилитронов и резисторов (соответственно VD15, R29 и VD16, R30). Поэтому потенциалы истоков транзисторов VT11.1 и VT11.2 равны напряжению стабилизации соответствующих стабилитронов (6,2 В по абсолютному значению). Это позволяет изменять управляющее напряжение на затворах транзисторов VT9 и VT10 не до 0 В, как в прототипе, а до плюс или минус 6 В. При этом напряжение между истоком и стоком этих транзисторов на пиках пульсаций может падать до 3 В и ниже без выхода из режима стабилизации.

Сказанное иллюстрируют полученные компьютерным моделированием осциллограммы на рис. 4. Зелёная – напряжение на истоке транзистора VT10, синяя – напряжение на его затворе, красная – напряжение на истоке транзистора VT11.2 (6,2 В), голубая – ток нагрузки минусового плеча. Видно, что напряжение на затворе транзистора VT10 лежит приблизительно посередине между напряжением на его истоке и на истоке транзистора VT11.2, а иногда опускается ниже 3 В.

Рис. 4. Осциллограммы

В стабилизатор добавлена триггерная защита по току, срабатывающая при превышении током нагрузки любой ветви стабилизатора значения 11 А. Она построена на транзисторах VT3, VT5, VT7 в плюсовом плече и VT4, VT6, VT8 – в минусовом. Датчиками тока служат резисторы R11-R14, соединённые попарно параллельно. Защита срабатывает при падении напряжения на любой из пар резисторов более 0,5. 0,6 В, что соответствует текущему через них току 11. 12 А.

По достижении этого порога лавинообразно открываются транзисторы триггерных ячеек VT3VT5 или VT4VT6 и соответственно транзисторы VT7 и VT8. Последние, открывшись, шунтируют стабилитроны VD13 и VD14, резко понижая этим выходное напряжение. Резисторы R21 и R24 ограничивают ток коллектора транзисторов при разрядке конденсаторов, включённых параллельно стабилитронам. Светодиоды HL1 и HL2 в базовых цепях транзисторов VT7 и VT8 сигнализируют о срабатывании защиты. Ток через них при этом не превышает 6 мА.

Конденсаторы С19 и С20 совместно с резисторами R17 и R18 образуют фильтры нижних частот, повышающие помехоустойчивость системы защиты. Увеличивать номиналы этих конденсаторов свыше 4700 пФ нежелательно, поскольку это увеличит время срабатывания защиты и пиковые токи через транзисторы VT9 и VT10. Чтобы защита срабатывала одновременно в обоих плечах стабилизатора, предусмотрена связь между триггерными ячейками через конденсаторы C21 и C22.

После срабатывания защиты транзисторы VT9 и VT10 остаются закрытыми до отключения устройства от питающей сети. Транзисторы триггерных ячеек закроются, а светодиоды HL1 и HL2 погаснут лишь после разрядки сглаживающих конденсаторов С7-С10. Остаётся одна проблема – обеспечить быструю разрядку сглаживающих конденсаторов после отключения. Её решают узлы на транзисторах VT1 и VT2, одинаковые в обоих каналах. Поэтому рассмотрим только узел, установленный в плюсовом канале.

При включении устройства в сеть конденсатор C17 заряжается через диод VD9 до напряжения, примерно равного амплитуде напряжения, поступающего с обмотки II трансформатора T1. Конденсатор С15 заряжается через резистор R5 и разряжается через диоды VD3, VD4 и диодный мост VD1. Потенциал затвора транзистора VT1 становится равным потенциалу его истока или даже немного ниже, поэтому транзистор закрыт. Закрытое состояние транзистора VT1 сохраняется на протяжении всего времени, пока подано напряжение питания. После его выключения диоды VD3 и VD4 закрываются. Напряжение затвор-исток транзистора благодаря резистору R5 возрастает до напряжения стабилизации стабилитрона VD7. Открывшись, транзистор VT1 подключает резисторы R3 и R7 параллельно конденсаторам C7 и С8, ускоряя их разрядку. Длительность разрядки сокращается до 10. 20 с при пиковом значении разрядного тока 780 мА, вполне допустимого для используемых транзисторов.

Рекомендуем к прочтению

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code

Adblock detector