Меню Закрыть

Соединить 9 точек чтобы получить многоугольник

Если вы попали на эту страницу, то вы наверняка уже пытались решить «тест 9 точек», а именно соединить девять точек четырьмя прямыми линиями не отрывая ручки от листа бумаги. Если у вас не получилось разгадать эту головоломку, не отчаивайтесь. На этой странице вы сможете найти несколько решений этой знаменитой непростой задачи о девяти точках, которые напрягли умы уже многих тысяч, если не миллионов людей.

Оглавление:

Условие задачи

Условие: нужно соединить нарисованные девять точек четырьмя прямыми линиями не отрывая ручки от листа бумаги.

Условие: нужно соединить нарисованные девять точек четырьмя прямыми линиями не отрывая ручки от листа бумаги.

Эта задача является не такой уж простой, как может показаться. Чтобы ее решить нужно думать нестандартно и применить свое творческое мышление, иначе ничего не получится. Если пытаться действовать в лоб начать соединять все точки стандартными линиями, то вы можете потратить уйму времени и так и не решить задачу девяти точек. Наше стандартное мышление, которому нас учат в школе, направляет нас искать решение, опираясь лишь на шесть типичных линий: 4 стороны квадрата и 2 его диагонали. Большинству людей кажется, что решение головоломки о 9 точках должно лежать именно в этих рамках. Но его там нет. Его даже не найти если подключить еще 2 линии между центрами сторон квадрата:

Вообще между всеми девятью точками можно провести всего 20 прямых линий: 4 стороны квадрата; 2 диагонали; 6 линий, соединяющих центры сторон большого квадрата; 8 линий соединяющих центры сторон большого квадрата с его углами. Как нарисовать все отрезки, соединяющие наши 9 точек, показано на рисунке ниже:

Но, даже используя эту схему, невозможно найти 4 линии, которыми можно было бы соединить все девять точек, не отрывая руки.

Верное решение «теста 9 точек»

Решение этой головоломки лежит несколько шире нашего стандартного восприятия задачи. Для того, чтобы самостоятельно найти верный подход вспомните, что:

  1. Через любые 2 точки можно провести только одну прямую линию.
  2. Прямая линия – это не отрезок и, следовательно, нам не обязательно ограничиваться при рисовании линий нашими девятью синими кружками.

Таким образом, давайте попробуем продолжить линии за пределы, ограничивающего нас до недавнего времени квадрата. Тут видно, что область нашего поиска значительно увеличилась. Потрудившись немного можно прийти к одному из правильных решений.

Последовательность соединений девяти точек четырьмя линиями:

  1. Для начала проведите линию, соединяющую точку №1 и точку №7, через точку №4. Не останавливайте движение и рисуйте дальше примерно столько, сколько от точки №4 до точки №7.
  2. Далее двигайтесь по диагонали направо-вверх, соединяя точки №8 и №6. Не останавливайтесь на точке №6 и продолжайте линию до мысленной прямой, проходящей через верхнюю сторону нашего квадрата.
  3. Нарисуйте линию справа налево последовательно через точки №3, №2 и №1. Остановитесь на точке №1.
  4. Теперь проведите финальный отрезок через точки №1, №5 и №9. Все 9 точек, и правда, соединены четырьмя линиями, как и требовалось в условии задачи.

Другие варианты. Этот способ не единственный, начинать можно от любого угла и двигаться одном из двух направлений. На сайте 4brain таких вариантов решения задачи «9 точек 4 линии» представлено минимум 12:

Только подумайте, задача, которую многие никак не могут решить, имеет 12 способов решения. Также смотрите упрощенный вариант этой задачи: как соединить 4 точки тремя линиями, чтобы линии замыкались в целую фигуру.

Читайте также:  Можно ли обучиться программированию самостоятельно

Творческий подход в этой головоломке

Большинство людей, которые решали эту задачу, так и не смогли выбраться за рамки стандартного мышления, которое в данном тесте выражено квадратом, образованным девятью точками. Нам комфортно смотреть на любую жизненную задачу прямо, наиболее просто. С другой стороны, человек может потратить много времени и сил для того, чтобы, используя стандартный подход, найти верное решение, когда это решение лучше искать, изначально подойдя к процессу творчески.

В нашей жизни мы часто сталкиваемся с такими задачами о «девяти точках и четырех линиях», и для того, чтобы их решать развивайте свое креативное мышление, в том числе и при помощи нашего тренинга. Ведь задача о 9 точках имеет и другие решения (об этом читайте дальше).

Другие способы решения

Изменив наш фрейм или применив латеральный разрыв можно найти и другие варианты решения этой задачи. Например, метод гиперболизации при создании латерального разрыва может нас привести к мысли, что никто не уточняет, что в задаче должны применяться стандартные условия геометрии (о бесконечной малости точек и бесконечной тонкости линий). Пусть наша линия будет настолько широкой, что сможет сразу пересекать несколько точек по своей ширине. Тогда мы не то что 4-мя линиями сможем соединить все 9 точек, а даже одной.

Кроме того, даже в нашем изображении 4-х точек, которое дано в нашем условии головоломки о 9 точках, сами точки-кружки достаточно большие, чтобы можно было их соединить 3-мя линиями вот так:

А может вообще не стоит ограничиваться двухмерным пространством или использовать концепцию искривления пространства. Также мы можем акцентировать внимание на фразу «не отрывая ручки от листа бумаги», и просто положив ручку на бок передвинуть ее и таким образом нарисовать просто 3 параллельных линии.

Нестандартная по своему рассуждению задачка о том, как соединить 9 точек 4 линиями, заставляет разбить стереотипы и включить творчество.

Как правильно расположить точки и рисунок?

На листе бумаги, лучше если он будет в клеточку, нужно нарисовать 9 точек. Они должны быть расположены по три в ряд. Выглядеть схема будет, как квадратик, в центре которого стоит точка, и посередине каждой из сторон тоже она имеется. Лучше, если этот рисунок расположить в стороне от краев листа. Такое размещение квадратика потребуется для того, чтобы правильно решить задачу о том, как соединить 9 точек 4 линиями.

Условие задачи

Требования, которые обязательно нужно учесть:

  • Отрывать ручку или карандаш от бумаги запрещается. Начало одной должно совпадать с концом другой.
  • Линии могут быть только идеально прямыми. Никаких перегибов не допускается.
  • Требуется провести ровно 4 линии через все нарисованные точки.

Соблюдая эти правила, нужно соединить 9 точек 4 линиями. Очень часто уже через пару минут размышлений над этим рисунком человек начинает утверждать, что ответа у этого задания нет.

Решение задачи

Главное в том, чтобы забыть все, чему учили в школе. Там дают стереотипные представления, которые здесь только помешают.

Основная причина того, что задание о том, как соединить 9 точек 4 линиями, не разгадывается в следующем случае: они заканчиваются в нарисованных точках.

Это принципиально неправильно. Точки — это концы отрезков, а в задаче явно говорится о линиях. Этим и нужно обязательно воспользоваться.

Начинать можно с любой вершины квадрата. Главное, именно угол, какой конкретно, не принципиально. Пусть обозначены точки будут слева, двигаясь направо, и сверху, перемещаясь вниз. То есть в первом ряду находятся 1, 2 и 3, второй состоит из 4, 5 и 6, а третий образован 7, 8 и 9.

Пусть начало будет находиться в первой точке. Тогда, чтобы соединить 9 точек 4 линиями, потребуется выполнить следующее.

  1. Вести луч по диагонали к точкам 5 и 9.
  2. На последней нужно остановиться — это конец первой линии.
  3. Дальше есть два пути, они оба равноценны и приведут к одинаковому результату. Первый направится к числу 8, то есть влево. Второй — к шестерке или вверх. Пусть будет последний вариант.
  4. Вторая линия начинается в точке 9 и идет через 6 и 3. Но на последней цифре она не заканчивается. Ее нужно продолжить вверх еще на такой отрезок, как если бы там была нарисована еще одна точка. Здесь будет конец второй линии.
  5. Теперь снова диагональ, которая пройдет через цифры 2 и 4. Нетрудно догадаться, что второе число не является концом третьей линии. Ее нужно продолжить, как было со второй. Так закончилась третья линия.
  6. Осталось провести четвертую через точки 7 и 8, которая должна закончиться в цифре 9.
Читайте также:  Eset nod32 antivirus internet security

На этом задание завершено и все условия соблюдены. Кому-то эта фигура напоминает зонт, а кто-то утверждает, что она — стрелка.

Если записать короче план того, как соединить 9 точек 4 линиями, то получится следующее: начать в 1, продолжить в 5, поворот в 9, провести в 6 и 3, продлить до (0), повернуть на 2 и 4, продолжить до (0), свернуть к 7, 8 и 9. Здесь (0) обозначены концы отрезков, у которых нет цифр.

В качестве заключения

Теперь можно еще поломать голову над более сложной задачкой. В ней уже 16 точек, расположенных аналогично рассмотренному заданию. И соединить их нужно уже 6 линиями.

Если и это задание оказалось по зубам, то можно попытаться решить другие, с такими же требованиями, но отличающиеся набором точек и прямых, из следующего списка:

  • 25 точек в порядке квадрата, как и все последующие, и 8 прямых;
  • 36 точек на 10 линий, которые не прерываются, потому что ручку нельзя отрывать от листа;
  • 49 точек, соединенные 12 линиями.

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Многоугольник – это замкнутая линия, которая образовывается, если взять каких-либо точек и соединить их последовательно отрезками.

  • Точки — вершины многоугольника.
  • Отрезки – стороны многоугольника.

При этом смежные стороны (имеющие общую вершину) не должны лежать на одной прямой, а несмежные стороны не должны иметь общих точек (то есть не должны пересекаться).

Многоугольник с сторонами называют -угольником.

Произвольные многоугольники

Давай-ка нарисуем, какие бывают многоугольники.

А теперь вопрос: какой из этих многоугольников выпадает из ряда?

Посмотри внимательно на второй многоугольник — он по-существу отличается от всех остальных. Чем же? Он не выпуклый. Это конечно математическое название, но с человеческой интуицией не расходится.

Ну вот, а мы будем рассматривать только выпуклые многоугольники, то есть такие, как 1),3),4) и т.п.

Итак, основной факт:

В любом многоугольнике сумма внутренних углов равна , где буква « » означает число углов многоугольника.

Давай сразу к примерам:

Четырехугольник

Пятиугольник

Шестиугольник

Ах да, про треугольник забыли.

Треугольник

А теперь давай все-таки разберемся, откуда же взялась формула . Зачем? Понимаешь, приемчик, который мы сейчас применим, часто оказывается полезным при решении разных задач. Несмотря на то, что теорема о сумме углов многоугольника верна для всякого многоугольника, доказательство красивое и простое только для выпуклых многоугольников. Итак, давай разделим многоугольник на треугольники.

Вот так: из одной точки проведем все диагонали, что можно. Сколько их будет? Считаем:

Читайте также:  Разрешить небезопасные приложения gmail
Всего вершин:
Из вершины можем провести диагонали во все вершины, кроме:

  • Самой вершины
  • Вершины
  • Вершины

Значит всего диагоналей . А на сколько треугольников распался наш многоугольник?

Представь себе: на . Порисуй, посчитай – удостоверься, что треугольников оказывается ровно на один больше.

Итак, у нас ровно треугольника. И сумма углов многоугольника просто равна сумме углов треугольников, на которые мы разбили многоугольник. Чему равна сумма углов треугольника? Помнишь? Конечно .

Ну вот, треугольника, в каждом по , значит:

Сумма углов многоугольника равна

Что же из этого может оказаться полезным? А вот что:

  1. Разделение на треугольники.
  2. Осознание того, что если провести какую-нибудь диагональ, то получится два новых многоугольника, сумма углов которых равна сумме углов большого многоугольника.

Вот смотри, был -угольник:

Его сумма углов . Провели диагональ, скажем :

Получился пятиугольник и семиугольник . Сумма углов равна , а сумма углов равна . А вместе : — все сошлось! Ну и на этом о произвольных многоугольниках – хватит.

Правильные многоугольники

Многоугольник называется правильным, если все его углы и все его стороны равны.

Так, например: квадрат – правильный четырехугольник, а вот прямоугольник – нет, хоть и все углы у него равные, и ромб – нет, хоть и все стороны равны. Нужно непременно, чтобы все углы и все стороны были равны.

Первый вопрос:

А можно ли найти величину одного (а значит и всех) угла правильного многоугольника?

И ответ: можно!

Давай посмотрим на примере.

Пусть есть, скажем, правильный восьмиугольник:

Сумма всех его углов равна . А сколько всего углов? Восемь конечно, и они все одинаковые.

Значит любой угол, скажем можно найти:

Что мы еще должны знать?

Любой правильный многоугольник можно вписать в окружность и вокруг любого правильного многоугольника можно описать окружность.

При этом центры этих окружностей совпадают.

Смотри как это выглядит!

И более того, всегда можно посчитать соотношение между радиусом вписанной и описанной окружностей.

Давай опять на примере восьмиугольника. Посмотри на . В нем

Значит, — и это не только в восьмиугольнике!

Чему же равен в нашем случае ?

Ровно половине , представь себе!

Значит . Смешно? Но так и есть! Поэтому для восьмиугольника .

Может возникнуть еще один вопрос: а можно ли посчитать углы «около» точки ? И тот же ответ: конечно можно! Опять рассмотрим наш восьмиугольник. Вот мы хотим найти (то есть ).

Мы знаем, что в сумма углов равна . Значит:

И так можно все находить не только для восьмиугольника, но и для любого правильного многоугольника.

МНОГОУГОЛЬНИКИ. КОРОТКО О ГЛАВНОМ

Многоугольник – это замкнутая линия, которая образовывается, если взять каких-либо точек и соединить их последовательно отрезками.

  • Точки — вершины многоугольника.
  • Отрезки – стороны многоугольника.

Многоугольник с сторонами называют -угольником .

Например: многоугольник c сторонами называют четырехугольником , многоугольник с сторонами — шестиугольником и так далее по аналогии.

Четырехугольник
Шестиугольник
  • Выпуклый многоугольник — многоугольник лежащий по одну сторону от любой прямой, соединяющей его соседние вершины.

Сумма внутренних углов выпуклого n -угольника равна или , где — внутренний угол многоугольника.

Правильный выпуклый многоугольник — многоугольник все стороны и внутренние углы которого равны.

Внутренний угол правильного -угольника равен .

  • Любой правильный многоугольник можно вписать в окружность и вокруг любого правильного многоугольника можно описать окружность.

Центры вписанной в правильный многоугольник окружности и окружности, описанной около него, совпадают.

Если многоугольник такой, что в него можно вписать окружность, то его площадь выражается формулой: , где .

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений.

Рекомендуем к прочтению

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code

Adblock
detector