Меню Закрыть

Разложить функцию на простейшие дроби

Для начала разберем теорию, далее решим парочку примеров для закрепления материала по разложению дробно рациональной функции на сумму простейших дробей. Подробно остановимся на методе неопределенных коэффициентов и методе частных значений, а также на их комбинации.

Простейшие дроби часто называют элементарыми дробями.

Различают следующие виды простейших дробей:

где A , M , N , a , p , q – числа, а дискриминант знаменателя в дробях 3) и 4) меньше нуля.

Называют их соответственно дробями первого, второго, третьего и четвертого типов.

Для чего вообще дробь раскладывать на простейшие?

Приведем математическую аналогию. Часто приходится заниматься упрощением вида выражения, чтобы можно было проводить какие-то действия с ним. Так вот, представление дробно рациональной функции в виде суммы простейших дробей примерно то же самое. Применяется для разложения функций в степенные ряды, ряды Лорана и, конечно же, для нахождения интегралов.

К примеру, требуетя взять интеграл от дробно рациональной функции . После разложения подынтегральной функции на простейшие дроби, все сводится к достаточно простым интегралам

Но об интегралах в другом разделе.

Разложить дробь на простейшие.

Вообще отношение многочленов раскладывают на простейшие дроби, если степень многочлена числителя меньше степени многочлена в знаменателе. В противном случае сначала проводят деление многочлена числителя на многочлен знаменателя, а уже затем проводят разложение правильной дробно рациональной функции.

Выполним деление столбиком (уголком):

Следовательно, исходная дробь примет вид:

Таким образом, на простейшие дроби будем раскладывать

Алгоритм метода неопределенных коэффициентов.

Во-первых, раскладываем знаменатель на множители.

Здесь все методы хороши – от вынесения за скобки, применения формул сокращенного умножения, до подбора корня и последующего деления столбиком (при знаменателе в виде многочлена с рациональными коэффициентами степени выше второй). Об этом подробнее в разделе теории – разложение многочлена на множители.

В нашем примере все просто – выносим х за скобки.

Во-вторых, раскладываемую дробь представляем в виде суммы простейших дробей с неопределенными коэффициентами.

Здесь стоит рассмотреть виды выражений, которые могут быть у Вас в знаменателе.

Если в знаменателе что-то вроде этого , количество линейных множителей роли не играет, (будь их 2 или 22 ), то дробь представится в виде суммы простейших дробей первого типа:

a , b , c и d — числа, A , B , C и D — неопределенные коэффициенты.

Если в знаменателе что-то вроде этого количество множителей роли не играет и не играют роли степени этих множителей (хоть 221ая степень), то дробь представится в виде суммы простейших дробей первого и второго типов:

a , b , c — числа, — неопределенные коэффициенты.

Возьмите на заметку: какая степень – столько и слагаемых.

Если в знаменателе что-то вроде этого количество квадратичных выражений роли не играет, то дробь представится в виде суммы простейших дробей третьего типа:

p , q , r и s — числа, P , Q , R и S — неопределенные коэффициенты.

Если в знаменателе что-то вроде этого количество множителей роли не играет и не играют роли степени этих множителей, то дробь представится в виде суммы простейших дробей третьего и четвертого типов:

p , q , r и s — числа, — неопределенные коэффициенты.

ОБЫЧНО ВСТРЕЧАЕТСЯ КОМБИНАЦИЯ ЭТИХ ВАРИАНТОВ (как правило, довольно простая).

Если собрать все в кучу ,то дробь представится в виде суммы простейших дробей всех четырех типов:

Хватит теории, на практике все равно понятнее.

Пришло время вернуться к примеру. Дробь раскладывается в сумму простейших дробей первого и третьего типов с неопределенными коэффициентами A , B и C .

В-третьих, приводим полученную сумму простейших дробей с неопределенными коэффициентами к общему знаменателю и группируем в числителе слагаемые при одинаковых степенях х .

То есть, пришли к равенству:

При x отличных от нуля это равенство сводится к равенству двух многочленов

А два многочлена являются равными тогда и только тогда, когда коэффициенты при одинаковых степенях совпадают.

В-четвертых, приравниваем коэффициенты при одинаковых степенях х .

При этом получаем систему линейных алгебраических уравнений с неопределенными коэффициентами в качестве неизвестных:

В-пятых, решаем полученную систему уравнений любым способом (при необходимости смотрите статью решение систем линейных алгебраических уравнений, методы решения, примеры), который нравится Вам, находим неопределенные коэффициенты.

В-шестых, записываем ответ.

Пожалуйста, не ленитесь, проверяйте ответ, приводя к общему знаменателю полученное разложение.

Метод неопределенных коэффициентов является универсальным способом при разложении дроби на простейшие.

Очень удобно использовать метод частных значений, если знаменатель представляет собой произведение линейных множителей, то есть имеет вид схожий с

Рассмотрим на примере, чтобы показать плюсы этого метода.

Разложить дробь на простейшие.

Так как степень многочлена в числителе меньше степени многочлена в знаменателе, то производить деление нам не придется. Переходим к разложению знаменателя на множители.

Читайте также:  Mophie powerstation usb c 3xl

Для начала выносим х за скобки.

Находим корни квадратного трехчлена (например, по теореме Виета):

Следовательно, квадратный трехчлен можно записать как

То есть, знаменатель примет вид

При данном знаменателе, исходная дробь раскладывается в сумму трех простейших дробей первого типа с неопределенными коэффициентами:

Полученную сумму приводим к общему знаменателю, но в числителе при этом скобки не раскрываем и не приводим подобные при А , В и С (на этом этапе как раз отличие от метода неопределенных коэффициентов):

Таким образом, пришли к равенству:

А теперь, для нахождения неопределенных коэффициентов, начинаем подставлять в полученное равенство «частные значения», при которых знаменатель обращается в ноль, то есть х=0 , х=2 и х=3 для нашего примера.

При х=0 имеем:

При х=2 имеем:

При х=3 имеем:

Как видите, различие метода неопределенных коэффициентов и метода частных значений лишь в способе нахождения неизвестных. Эти методы можно совмещать для упрощения вычислений.

Разложить дробно рациональное выражение на простейшие дроби.

Так как степень многочлена числителя меньше степени многочлена знаменателя и знаменатель уже разложен на множители, то исходное выражение представится в виде суммы простейших дробей следующего вида:

Приводим к общему знаменателю:

Приравниваем числители.

Очевидно, что нулями знаменателя являются значения х=1 , х=-1 и х=3 . Используем метод частных значений.

При х=1 имеем:

При х=-1 имеем:

При х=3 имеем:

Осталось найти неизвестные и

Для этого подставляем найденные значения в равенство числителей:

После раскрытия скобок и приведения подобных слагаемых при одинаковых степенях х приходим к равенству двух многочленов:

Приравниваем соответствующие коэффициенты при одинаковых степенях, тем самым составляем систему уравнений для нахождения оставшихся неизвестных и . Получаем систему из пяти уравнений с двумя неизвестными:

Из первого уравнения сразу находим , из второго уравнения

В итоге получаем разложение на простейшие дроби:

Если бы мы сразу решили применить метод неопределенных коэффициентов, то пришлось бы решать систему пяти линейных алгебраических уравнений с пятью неизвестными. Применение метода частных значений позволило легко отыскать значения трех неизвестных из пяти, что значительно упростило дальнейшее решение.

В этой статье будет рассматриваться и вычисляться разложение дробно-рациональной функции на сумму простейших дробей.

Дробно-рациональная функция имеет следующий вид

Если степень при неизвестном в числителя меньше, чем степень при неизвестном в знаменателе ( как это показано в примере) то такая функция называется правильной дробно-рациональной.

Каждую правильную дробно-рациональную функцию можно разложить на сумму простейших дробей.

Простейшая дробь имеет общий вид

Практически в каждом подобном интернет-ресурсе, в котором рассказывается о разложении дробей, в качестве метода решения используется метод неопределенных коэффициентов. Останавливатся мы на этом методе не будем, так как не хочу плодить еще одну копию с немного другим текстом. Напомним лишь, что там необходимо решать систему линейных уравнений.

Мы с Вами будем использовать другую методику, да и онлайн калькулятор тоже возьмет эту методику на вооружение.

Итак, если мы знаем все корни знаменателя в нашей функции то можно преобразовать

То есть нам надо разложить функцию в следующий вид

и определить все неизвестные коэффициенты

Воспользуемся методом(иногда его называют метод частных значений), практика применения такова:

Пусть x=1 тогда подставляя это значение в числитель мы получим значение 4, подставив в знаменатель без (x-1) мы получим (1+3)(1-7)(1+2)(1-2)=72

Таким образом коэффициент

Теперь пусть x=-3 Тогда числитель равен (-3)^2+(-3)+2=8, а знаменатель (-3-1)(-3-7)(-3+2)(-3-2)=200

Таким образом коэффициент

Пробегая, по всем x, равными 1, -3, 7, -2, 2 мы вычисляем коэффициенты

Наш ответ такой

На мой взгляд это решение проще. Но эта методика может использоватся тогда, когда в знаменателе нет кратных корней.

"Как? Такой легкий способ и неприменим, в случае кратных корней?" — огорченно воскликнет читатель.

Не все так плохо на самом деле. Просто в случае кратных корней например расчет более сложный. Алгоритм сейчас объясню.

Но для этого Вы должны уметь вычислять производную многочлена, надеюсь Вы это умеете.

Первым делом преобразуем знаменатель в многочлен. Что бы не умножать вручную воспользуемся Создание полинома (многочлена) одной переменной онлайн

Введем корни знаменателя с учетом их кратности 1 1 1 -3 7 7

Нам надо исходную дробь преобразовать в такой вид

На основании вышеразобранного примера мы сразу можем узнать чему равны коэффициенты D, C и F

Читайте также:  Максимальный размер письма gmail

Попробуем узнать коэффициент B

Возьмем первую производную от числителя. Она равна .

Подставим туда единицу, разделим на один факториал 1!=1 и и запомним значение = 3

Теперь знаменатель. Узнаем значения производных знаменателя ( при x=1) через онлайн сервис Значение производной многочлена по методу Горнера

Введя коэффициенты полинома

Заданная функция

Отсюда следует, что дробь примет вид

2 x 3 + 3 x 3 + x = 2 + — 2 x + 3 x 3 + x

Значит, такое разложение приведет к тому, что результат будет равен — 2 x + 3 x 3 + x .

Алгоритм метода неопределенных коэффициентов

Для того, чтобы правильно произвести разложение, необходимо придерживаться нескольких пунктов:

  • Произвести разложение на множители. можно применять вынесение за скобки, формулы сокращенного умножения, подбор корня. Имеющийся пример x 3 + x = x x 2 + 1 для упрощения выносят х за скобки.
  • Разложение дроби на простейшие дроби с неопределенными коэффициентами.

Рассмотрим на нескольких примерах:

Когда в знаменателе имеется выражение вида ( x — a ) ( x — b ) ( x — c ) ( x — d ) , количество множителей не имеет значения, дробь можно представить в виде дроби первого типа A x — a + B x — b + C x — c + D x — d , где a , b , c и d являются числами, A , B , C и D – неопределенными коэффициентами.

Когда знаменатель имеет выражение ( x — a ) 2 ( x — b ) 4 ( x — c ) 3 , количество множителей также не имеет значения, причем саму дробь необходимо привести ко второму или первому типу вида:

A 2 x — a 2 + A 1 x — a + B 4 x — b 4 + B 3 x — b 3 + B 2 x — b 2 + B 1 x — b + + C 3 x — c 3 + C 2 x — c 2 + C 1 x — c

где имеющиеся a , b , c являются числами, а A 1 , A 2 , B 1 , B 2 , B 3 , B 4 , C 1 , C 2 , C 3 — неопределенными коэффициентами. Какова степень многочлена, такое количество слагаемых имеем.

Когда знаменатель имеет вид типа x 2 + p x + q x 2 + r x + s , тогда количество квадратичных функций значения не имеет, а дробь принимает вид третьего типа P x + Q x 2 + p x + q + R x + S x 2 + r x + s ,где имеющиеся p , q , r и s являются числами, а P , Q , R и S – определенными коэффициентами.

Когда знаменатель имеет вид x 2 + p x + q 4 x 2 + r x + s 2 , количество множителей значения не имеет также , как и их степени, дробь представляется в виде третьего и четверного типов вида

P 4 x + Q 4 ( x 2 + p x + q ) 4 + P 3 x + Q 3 ( x 2 + p x + q ) 3 + P 2 x + Q 2 ( x 2 + p x + q ) 2 + P 1 x + Q 1 x 2 + p x + q + + R 2 x + S 2 ( x 2 + r x + s ) 2 + R 1 x + S 1 x 2 + r x + s

где имеющиеся p , q , r и s являются числами, а P 1 , P 2 , P 3 , P 4 , R 1 , R 2 , S 1 , S 2 — неопределенными коэффициентами.

Когда имеется знаменатель вида ( x — a ) ( x — b ) 3 ( x 2 + p x + q ) ( x 2 + r x + s ) 2 , тогда дробь необходимо представить в виде четвертого типа

A x — a + B 3 x — b 3 + В 2 x — b 2 + В 1 x — b + + P x + Q x 2 + p x + q + R 2 x + S 2 x 2 + r x + s 2 + R 1 x + S 1 x 2 + r x + s

Рассмотрим на примере дроби. Когда дробь раскладывается в сумму третьим типом вида 2 x — 3 x 3 + x = 2 x — 3 x ( x 2 + 1 ) = A x + B x + C x 2 + 1 , где A , B и C являются неопределенными коэффициентами.

Приведение полученной суммы простейших дробей при наличии неопределенного коэффициента к общему знаменателю, применяем метода группировки при одинаковых степенях х и получаем, что

2 x — 3 x 3 + x = 2 x — 3 x ( x 2 + 1 ) = A x + B x + C x 2 + 1 = = A ( x 2 + 1 ) + ( B x + C ) x x ( x 2 + 1 ) = A x 2 + A + B x 2 + C x x ( x 2 + 1 ) = = x 2 ( A + B ) + x C + A x ( x 2 + 1 )

Когда х отличен от 0 , тогда решение сводится к приравниванию двух многочленов. Получаем 2 x — 3 = x 2 ( A + B ) + x C + A . Многочлены считаются равными тогда, когда совпадают коэффициенты при одинаковых степенях.

  • Приравнивание коэффициентов с одинаковыми степенями х. Получим, что система линейных уравнений при наличии определенных коэффициентов:
    A + B = 0 C = 2 A = — 3
  • Решение полученной системы при помощи любого способа для нахождения неопределенных коэффициентов: A + B = 0 C = 2 A = — 3 ⇔ A = — 3 B = 3 C = 2
  • Производим запись ответа:
    2 x 3 + 3 x 3 + x = 2 — 2 x — 3 x 3 + x = 2 — 2 x — 3 x ( x 2 + 1 ) = = 2 — A x + B x + C x 2 + 1 = 2 — — 3 x + 3 x + 2 x 2 + 1 = 2 + 3 x — 3 x + 2 x 2 + 1
Читайте также:  Проверка звука в наушниках правый левый

Необходимо постоянно выполнять проверки. Это способствует тому, что приведение к общему знаменателю получит вид

2 + 3 x — 3 x + 2 x 2 + 1 = 2 x ( x 2 + 1 ) — ( 3 x + 2 ) x x ( x 2 + 1 ) = 2 x 3 + 3 x 3 + x

Методом неопределенных коэффициентов считают метод разложения дроби на другие простейшие.

Использование метода частных значений способствует представлению линейных множителей таким образом:

x — a x — b x — c x — d .

Произвести разложение дроби 2 x 2 — x — 7 x 3 — 5 x 2 + 6 x .

По условию имеем, что степень многочлена числителя меньше степени многочлена знаменателя, тогда деление выполнять не нужно. Необходимо перейти к разложению на множители. для начала необходимо выполнить вынесение х за скобки. Получим, что

x 3 — 5 x 2 + 6 x = x ( x 2 — 5 x + 6 )

Квадратный трехчлен x 2 — 5 x + 6 имеет корни, которые находим не по дискриминанту, а по теореме Виета. Получим:

x 1 + x 2 = 5 x 1 · x 2 = 6 ⇔ x 1 = 3 x 2 = 2

Запись трехчлена может быть в виде x 2 — 5 x + 6 = ( x — 3 ) ( x — 2 ) .

Тогда изменится знаменатель: x 2 — 5 x 2 + 6 x = x ( x 2 — 5 x + 6 ) = x ( x — 3 ) ( x — 2 )

Имея такой знаменатель, дробь раскладываем на простейшие дроби с неопределенными коэффициентами. Выражение примет вид:

2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = 2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A x + B x — 3 + C x — 2

Полученный результат необходимо приводить к общему знаменателю. Тогда получаем:

2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = 2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A x + B x — 3 + C x — 2 = = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 ) x ( x — 3 ) ( x — 2 )

После упрощения придем к неравенству вида

2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 ) x ( x — 3 ) ( x — 2 ) ⇒ ⇒ 2 x 2 — x — 7 = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 )

Теперь переходим к нахождению неопределенных коэффициентов. Нужно подставлять полученные значения в равенство для того, чтобы знаменатель обратился в ноль, то есть значения х = 0 , х = 2 и х = 3 .

Если х = 0 , получим:

2 · 0 2 — 0 — 7 = A ( 0 — 3 ) ( 0 — 2 ) + B · 0 · ( 0 — 2 ) + C · 0 · ( 0 — 3 ) — 7 = 6 A ⇒ A = — 7 6

Если x = 2 , тогда

2 · 2 2 — 2 — 7 = A ( 2 — 3 ) ( 2 — 2 ) + B · 2 · ( 2 — 2 ) + C · 2 · ( 2 — 3 ) — 1 = — 2 C ⇒ C = 1 2

Если x = 3 , тогда

2 · 3 2 — 3 — 7 = A ( 3 — 3 ) ( 3 — 2 ) + B · 3 · ( 3 — 2 ) + C · 3 · ( 3 — 3 ) 8 = 3 B ⇒ B = 8 3

Ответ: 2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = A x + B x — 3 + C x — 2 = — 7 6 · 1 x + 8 3 · 1 x — 3 + 1 2 · 1 x — 2

Метод коэффициентов и метод частных значений отличаются только способом нахождения неизвестных. Данные методы могут быть совмещены для быстрого упрощения выражения.

Произвести разложение выражения x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 на простейшие дроби.

По условию имеем, что степень числителя многочлена меньше знаменателя, значит зазложение примет вид

x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C ( x — 3 ) 3 + C ( x — 3 ) 2 + C x — 3

Производим приведение к общему знаменателю. Имеем, что

x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C ( x — 3 ) 3 + C ( x — 3 ) 2 + C x — 3 = = A ( x + 1 ) ( x — 3 ) 3 + B ( x — 1 ) ( x — 3 ) 3 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 + + C 3 ( x — 1 ) ( x + 1 ) + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3

Приравняем числители и получим, что

x 4 + 3 x 3 + 2 x + 11 = = A ( x + 1 ) ( x — 3 ) 3 + B ( x — 1 ) ( x — 3 ) 3 + + C 3 ( x — 1 ) ( x + 1 ) + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2

Из выше написанного понятно, что нули знаменателя – это х = 1 , х = — 1 и х = 3 . Тогда применим метод частных решений. Для этого подставим значения х. получим, что если х=1:

— 5 = — 16 A ⇒ A = 5 16

— 15 = 128 B ⇒ B = — 15 128

157 = 8 C 3 ⇒ C 3 = 157 8

Отсюда следует, что нужно найти значения C 1 и C 3 .

Поэтому подставим полученный значения в числитель, тогда

x 4 + 3 x 3 + 2 x — 11 = = 5 16 ( x + 1 ) ( x — 3 ) 3 — 15 128 ( x — 1 ) ( x — 3 ) 3 + 157 8 ( x — 1 ) ( x + 1 ) + + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2

Раскроем скобки для того, чтобы привести подобные слагаемые с одинаковыми степенями. Придем к выражению вида

x 4 + 3 x 3 + 2 x — 11 = x 4 25 128 + C 1 + x 3 — 85 64 + C 2 — 6 C 1 + + x 2 673 32 — 3 C 2 + 8 C 1 + x 405 64 — C 2 + 6 C 1 + 3 C 2 — 9 C 1 — 3997 128

Необходимо приравнять соответствующие коэффициенты с одинаковыми степенями, тогда сможем найти искомое значение C 1 и C 3 . Теперь необходимо решить систему:

25 128 + C 1 = 1 — 85 64 + C 2 — 6 C 1 = 3 673 32 — 3 C 2 + 8 C 1 = 0 405 64 — C 2 + 6 C 1 = 2 3 C 2 — 9 C 1 — 3997 128 = 11

Первое уравнение дает возможность найти C 1 = 103 128 , а второе C 2 = 3 + 85 64 + 6 C 1 = 3 + 85 64 + 6 · 103 128 = 293 32 .

Итог решения – это искомое разложение дроби на простейшие вида:

x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C 3 x — 3 3 + C 2 x — 3 2 + C 1 x — 3 = = 5 16 1 x — 1 — 15 128 1 x + 1 + 157 8 · 1 x — 3 3 + 293 32 1 x — 3 2 + 103 128 1 x — 3

При непосредственном применении метода неопределенных коэффициентов необходимо было бы решать все пять линейных уравнений, объединенных в систему. Такой метод упрощает поиск значения переменных и дальнейшее решение в совокупности. Иногда применяется несколько методов. Это необходимо для быстрого упрощения всего выражения и поиска результата.

«>

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.