Меню Закрыть

Преобразование фурье в маткаде

Содержание

Mathcad содержит функции для выполнения быстрого дискретного преобразования Фурье (БПФ) и его обращения. В Mathcad PLUS имеется также одномерное дискретное волновое преобразование и его обращение. Все эти функции имеют векторные аргументы. При определении вектора v для нахождения волнового преобразования или преобразования Фурье убедитесь, что первый элемент вектора имеет нулевой индекс: v. Если элемент v не определен, Mathcad автоматически устанавливает его равным 0. Это может привести к искажению результата.

Введение в дискретное преобразование Фурье

В Mathcad входят два типа функций для дискретного преобразования Фурье: fft/ifft и cfft/icfft . Эти функции дискретны: они берут в качестве аргументов и возвращают векторы и матрицы. Они не могут быть использованы с другими функциями.

Используйте функции fft и ifft, если выполнены следующие два условия:

  • аргументы вещественны, и
  • вектор данных имеет 2 m элементов.

Используйте функции cfft и icfft во всех других случаях.
Первое условие необходимо, потому что функции fft/ifft используют тот факт, что для вещественных данных вторая половина преобразования Фурье является комплексно сопряженной с первой. Mathcad отбрасывает вторую половину вектора-результата. Это сохраняет и время и память при вычислениях.

Пара функций cfft/icfft не использует симметрию в преобразовании. По этой причине необходимо использовать их для комплексных данных. Так как вещественные числа — подмножество комплексных чисел, можно также использовать пару cfft/icfft для вещественных чисел.

Второе условие требуется, потому что пара функций fft/ifft использует высоко эффективный алгоритм быстрого преобразования Фурье. Для этого вектор аргумента, используемого с fft, должен иметь 2 m элементов. В функциях сfft/icfft использован алгоритм, который допускает в качестве аргументов как матрицы, так и векторы произвольного размера. Когда эта пара функций используется с матрицей в качестве аргумента, вычисляется двумерное преобразование Фурье.

Обратите внимание, что, если использована функция fft для прямого преобразования, необходимо использовать функцию ifft для обратного. Аналогично, если для прямого преобразования использована cfft, то для обратного необходимо использовать icfft.

Различные формулировки определения преобразования Фурье используют различные нормировочные коэффициенты и соглашения о знаке перед мнимой единицей в показателе экспоненты прямого и обратного преобразований. Функции fft, ifft, cfft и icfft используют 1/ как нормировочный коэффициент и положительный показатель степени в прямом преобразовании. Функции FFT, IFFT, CFFT и ICFFT используют 1/N как нормировочный коэффициент и отрицательный показатель степени в прямом преобразовании. Необходимо использовать эти функции попарно. Например, если используется CFFT в прямом преобразовании, необходимо использовать ICFFT в обратном.

Преобразование Фурье в вещественной области

Для вещественнозначных векторов с 2 m элементами можно применять пару функций fft/ifft. В алгоритме вычисления этих функций используются преимущества симметрии, существующей только для вещественных данных. Это позволяет сохранить и время, и память, необходимые для вычислений.

fft (v) Возвращает дискретное преобразование Фурье 2 m -мерного вещественнозначного вектора. Аргумент можно интерпретировать как результат измерений через равные промежутки времени некоторого сигнала.

Вектор v должен иметь 2 m элементов. Результат — комплекснозначный вектор размерности 1+2 m-1 . Если v имеет размерность отличную от 2 m , Mathcad выдает сообщение об ошибке “неверный размер вектора”.

Элементы вектора, возвращаемого fft, вычисляются по формуле

В этой формуле n — число элементов в v, i — мнимая единица.

Элементы в векторе, возвращенном функцией fft, соответствуют различным частотам. Чтобы восстанавливать фактическую частоту, необходимо знать частоту измерения исходного сигнала. Если v есть n-мерный вектор, переданный функции fft, и частота измерения исходного сигнала — fs, то частота, соответствующая , равна

Обратите внимание, что это делает невозможным обнаружить частоты выше частоты измерения исходного сигнала. Это — ограничение налагаемое не Mathcad, а самой сутью проблемы. Чтобы правильно восстанавливать сигнал по его преобразованию Фурье, необходимо произвести измерения исходного сигнала с частотой, по крайней мере вдвое большей, чем ширина полосы частот. Полное обсуждение этого явления лежит за пределами данного руководства, но его можно найти в любом учебнике по цифровой обработке сигналов .

ifft (v) Возвращает обратное дискретное преобразование Фурье; результат — вещественнозначный.
Читайте также:  Создать apple id с компьютера для айфона

Вектор v должен иметь 1+ 2 m элементов, где m — целое. Результат есть комплекснозначный вектор размерности 2 m+1 . Если v имеет размерность, отличную от 1+ 2 m , Mathcad выдает сообщение об ошибке “неверный размер вектора”.

Аргумент v — вектор, подобный созданному функцией fft. Чтобы вычислить результат, Mathcad сначала создает новый вектор w, комплексно сопряженный v, и присоединяет его к вектору v. Затем Mathcad вычисляет вектор d, чьи элементы вычисляются по формуле:

Это та же самая формула, что и для fft, кроме знака минус в функции exp. Функции fft и ifft — точные обращения. Для всх вещественнозначных v справедливо ifft(fft(v))=v.

Преобразование Фурье в комплексной области

Имеются две причины, по которым не могут быть использованы пары преобразований fft/ifft, обсужденные в предыдущем разделе:

  • Данные могут быть комплекснозначны. Это означает, что Mathcad не может больше использовать симметрию, имеющую место в вещественном случае.
  • Вектор данных может иметь размерность, отличную от 2 m . Это означает, что Mathcad не может пользоваться преимуществом высокоэффективного алгоритма БПФ, используемого парой fft/ifft.

Комплексное преобразование Фурье требует следующих функций:

cfft (A) Возвращает дискретное преобразование Фурье комплекснозначных вектора или матрицы. Возвращаемый массив имеет тот же самый размер, что и массив, используемый как аргумент.
icfft (A) Возвращается обращение дискретного преобразования Фурье вектора или матрицы данных. Функция icfft — обратная к функции cfft. Подобно cfft, эта функция возвращает массив того же самого размера, что и аргумент.

Рисунок 3: Использование быстрых преобразований Фурье в Mathcad.

Пара преобразований cfft/icfft может работать с массивами любого размера. Однако они работают значительно быстрее, когда число строк и столбцов может быть представлено в виде произведения большого количества меньших сомножителей. Например, векторы с длиной 2 m относятся к этому классу, так же как и векторы, имеющие длины, подобные 100 или 120. С другой стороны, вектор, чья длина — большое простое число, замедлит вычисление преобразования Фурье.

Функции cfft и icfft — обратные друг к другу. То есть icfft(cfft(v))=v. Рисунок 3 показывает примеры использования преобразования Фурье в Mathcad.

Когда в качестве аргумента cfft используется матрица, результат есть двумерное преобразование Фурье исходной матрицы.

Альтернативные формы преобразования Фурье

Определения преобразования Фурье, обсужденные выше, не являются единственно возможными. Например, следующие определения для дискретного преобразования Фурье и его обращения можно найти в книге Ronald Bracewells, The Fourier Transform and Its Applications (McGraw-Hill, 1986):

Эти определения весьма распространены в технической литературе. Чтобы использовать эти определения вместо обсужденных в предыдущем разделе, используйте функции FFT, IFFT, CFFT и ICFFT. Они отличаются следующим:

  • Вместо коэффициента 1/ перед обеими формулами в прямом преобразовании стоит коэффициент 1/n, и коэффициент 1 в обратном преобразовании.
  • Знак минус появляется в показателе экспоненты прямого преобразования и исчезает в формуле обратного.

Функции FFT, IFFT, CFFT и ICFFT используются аналогично функциям, обсужденным в предыдущем разделе.

Волновое преобразование

A Mathcad PLUS включены две функции волновых преобразований: для выполнения прямого одномерного дискретного волнового преобразования и его обращения. Преобразование выполняется с использованием четырехкоэффициентного волнового базиса Даубечи.

Е wave (v) Возвращает дискретное волновое преобразование v, 2 m -мерного вещественнозначного вектора. Возвращается вектор того же самого размера, что и v.
Е iwave (v) Возвращает обращение дискретного волнового преобразования v, 2 m -мерного вещественнозначного вектора. Возвращается вектор того же самого размера, что и v.

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Дискретное преобразование Фурье

В предыдущем разделе рассказывалось о возможностях символьного процессора Mathcad, позволяющего осуществить аналитическое преобразование Фурье функции, заданной формулой. Между тем огромный пласт задач вычислительной математики связан с расчетом интегралов Фурье для функций, либо заданных таблично (например, представляющих собой результаты какого-либо эксперимента), либо функций, проинтегрировать которые аналитически не удается. В данном случае вместо символьных преобразований приходится применять численные методы интегрирования, связанные с дискретизацией подынтегральной функции и называемые потому дискретным Фурье-преобразованием.

Читайте также:  Как из мп4 сделать двд

В численном процессоре Mathcad дискретное преобразование Фурье реализовано при помощи популярнейшего алгоритма быстрого преобразования Фурье (сокращенно БПФ). Этот алгоритм реализован в нескольких встроенных функциях Mathcad, различающихся только нормировками:

  • fft(y) – вектор прямого преобразования Фурье;
  • FFT (у) – вектор прямого преобразования Фурье в другой нормировке;
  • ifft (w) – вектор обратного преобразования Фурье;
  • IFFT (w) – вектор обратного преобразования Фурье в другой нормировке:
  • у – вектор действительных данных, взятых через равные промежутки значений аргумента;
  • w – вектор действительных данных Фурье-спектра, взятых через равные промежутки значений частоты.

Внимание!
Аргумент прямого Фурье-преобразования, т. е. вектор у, должен иметь ровно 2 n элементов (n – целое число). Результатом является вектор с 1+2 n-1 элементами. И наоборот, аргумент обратного Фурье-преобразования должен иметь 1+2 n-1 элементов, а его результатом будет вектор из 2 n элементов. Если число данных не совпадает со степенью 2, то необходимо дополнить недостающие элементы нулями
.

В листинге 4.14 показан пример расчета Фурье-спектра для модельной функции f (x), представляющей собой сумму двух синусоид разной амплитуды (верхний график на рис. 4.10). Расчет проводится по N=128 точкам, причем предполагается, что интервал дискретизации данных уi равен h. В предпоследней строке листинга корректно определяются соответствующие значения частот W, а в последней применяется встроенная функция FFT. Полученный график Фурье-спектра показан на рис. 4.10 (снизу). Обратите внимание, что результаты расчета представляются в виде его модуля, поскольку сам спектр, как уже отмечалось, является комплексным. Очень полезно сравнить полученные амплитуды и местоположение пиков спектра с определением синусоид в начале листинга.

Примечание
Более подробную информацию о свойствах и практике применения Фурье-преобразования вы найдете в главе 14
.

Листинг 4.14. Дискретное преобразование Фурье (алгоритм БПФ) модельного сигнала:


Рис. 4.10. Модельная функция и ее преобразование Фурье (продолжение листинга 4.14)

Математический смысл преобразования Фурье состоит в представлении сигнала у(х) в виде бесконечной суммы синусоид вида F(v)sin(vx). Функция F(v) называется преобразованием Фурье или интегралом Фурье, или Фурье-спектром сигнала. Ее аргумент v имеет смысл частоты соответствующей составляющей сигнала. Обратное преобразование Фурье переводит спектр F(V) в исходный сигнал у(х). Согласно определению,

Как видно, преобразование Фурье является существенно комплексной величиной, даже если сигнал действительный.

Преобразование Фурье действительных данных

Преобразование Фурье имеет огромное значение для различных математических приложений, и для него разработан очень эффективный алгоритм, называемый БПФ (быстрым преобразованием Фурье). Этот алгоритм реализован в нескольких встроенных функциях Mathcad, различающихся нормировками.

  • fft(y) — вектор прямого преобразования Фурье;
  • FFT(Y) — вектор прямого преобразования Фурье в другой нормировке;
  • ifft(v) — вектор обратного преобразования Фурье;
  • IFFT(V) — вектор обратного преобразования Фурье в другой нормировке;
  • у — вектор действительных данных, взятых через равные промежутки значений аргумента;
  • v — вектор действительных данных Фурье-спектра, взятых через равные промежутки значений частоты.

Аргумент прямого Фурье-преобразования, т. е. вектор у, должен иметь ровно 2 n элементов (n — целое число). Результатом является вектор с 1+2 n-1 элементами. И наоборот, аргумент обратного Фурье-преобразования должен иметь 1+2 n-1 элементов, а его результатом будет вектор из 2 n элементов. Если число данных не совпадает со степенью 2, то необходимо дополнить недостающие элементы нулями.

Рис. 15.24. Исходные данные и обратное преобразование Фурье (листинг 15.20)

Пример расчета Фурье-спектра для суммы трех синусоидальных сигналов разной амплитуды (показанных в виде сплошной кривой на рис. 15.24), приведен в листинге 15.20. Расчет проводится по N=128 точкам, причем предполагается, что интервал дискретизации данных ух равен А. В предпоследней строке листинга применяется встроенная функция if ft, а в последней корректно определяются соответствующие значения частот Qx. Обратите внимание, что результаты расчета представляются в виде модуля Фурье-спектра (рис. 15.25), поскольку сам спектр является комплексным. Очень полезно сравнить полученные амплитуды и местоположение пиков спектра с определением синусоид в листинге 15.20.

Листинг 15.20. Быстрое преобразование Фурье

Читайте также:  Darkest dungeon черты характера

Рис. 15.25. Преобразование Фурье (листинг 15.20)

Результат обратного,преобразования Фурье показан в виде кружков на том же рис. 15.24, что и исходные данные. Видно, что в рассматриваемом случае сигнал у(х) восстановлен с большой точностью, что характерно для плавного изменения сигнала.

Преобразование Фурье комплексных данных

Алгоритм быстрого преобразования Фурье для комплексных данных встроен в соответствующие функции, в имя которых входит литера "с".

  • cfft(y) — вектор прямого комплексного преобразования Фурье;
  • CFFT(y) — вектор прямого комплексного преобразования Фурье в другой нормировке;
  • icfft(y) —вектор обратного комплексного преобразования Фурье;
  • ICFFT(V) — вектор обратного комплексного преобразования Фурье в другой нормировке;
  • у — вектор данных, взятых через равные промежутки значений аргумента;
  • v — вектор данных Фурье-спектра, взятых через равные промежутки значений частоты.

Функции действительного преобразования Фурье используют тот факт, что в случае действительных данных спектр получается симметричным относительно нуля, и выводят только его половину (см. выше разд. "Преобразование Фурье действительных данных" этой главы). Поэтому, в частности, по 128 действительным данным получалось всего 65 точек спектра Фурье. Если к тем же данным применить функцию комплексного преобразования Фурье (рис. 15.26), то получится вектор из 128 элементов. Сравнивая рис. 15.25 и 15.26, можно уяснить соответствие между результатами действительного и комплексного Фурье-преобразования.

Рис. 15.26. Комплексное преобразование Фурье (продолжение листинга 15.20)

Двумерное преобразование Фурье

В Mathcad имеется возможность применять встроенные функции комплексного преобразования Фурье не только к одномерным, но и к двумерным массивам, т. е. матрицам. Соответствующий пример приведен в листинге 15.21 и на рис. 15.27 в виде графика линий уровня исходных данных и рассчитанного Фурье-спектра.

Листинг 15.21. Двумерное преобразование Фурье

Рис. 15.27. Данные (слева) и их Фурье-спектр (справа) (листинг 15.21)

Понятие же "физического вакуума" в релятивистской квантовой теории поля подразумевает, что во-первых, он не имеет физической природы, в нем лишь виртуальные частицы у которых нет физической системы отсчета, это "фантомы", во-вторых, "физический вакуум" — это наинизшее состояние поля, "нуль-точка", что противоречит реальным фактам, так как, на самом деле, вся энергия материи содержится в эфире и нет иной энергии и иного носителя полей и вещества кроме самого эфира.

В отличие от лукавого понятия "физический вакуум", как бы совместимого с релятивизмом, понятие "эфир" подразумевает наличие базового уровня всей физической материи, имеющего как собственную систему отсчета (обнаруживаемую экспериментально, например, через фоновое космичекое излучение, — тепловое излучение самого эфира), так и являющимся носителем 100% энергии вселенной, а не "нуль-точкой" или "остаточными", "нулевыми колебаниями пространства". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА
Рыцари теории эфира
01.10.2019 — 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]69vJGqDENq4[/Youtube][/center]
[center]14:36[/center]
Osievskii Global News
29 сент. Отправлено 05:20, 01.10.2019 г.’ target=_top>Просвещение от Вячеслава Осиевского — Карим_Хайдаров.
30.09.2019 — 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Ok]376309070[/Ok][/center]
[center]11:03[/center] Отправлено 12:51, 30.09.2019 г.’ target=_top>Просвещение от Дэйвида Дюка — Карим_Хайдаров.
30.09.2019 — 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]VVQv1EzDTtY[/Youtube][/center]
[center]10:43[/center]

интервью Раввина Борода https://cursorinfo.co.il/all-news/rav.
мой телеграмм https://t.me/peshekhonovandrei
мой твиттер https://twitter.com/Andrey54708595
мой инстаграм https://www.instagram.com/andreipeshekhonow/

[b]Мой комментарий:
Андрей спрашивает: Краснодарская синагога — это что, военный объект?
— Да, военный, потому что имеет разрешение от Росатома на манипуляции с радиоактивными веществами, а также иными веществами, опасными в отношении массового поражения. Именно это было выявлено группой краснодарцев во главе с Мариной Мелиховой.

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.