Меню Закрыть

Максимальная скорость фотоэлектронов формула

КВАНТОВАЯ ОПТИКА И ЯДЕРНАЯ ФИЗИКА

Найти максимальную скорость фотоэлектронов, вырываемых с поверхности металла светом с длиной волны λ = 180 нм . Красная граница фотоэффекта λ = 275 нм

Дано:

λкр = 275 нм =275·10 -9 м

λкр = 180 нм =180·10 -9 м

Решение:

Зная красную границу фотоэффекта, найдем работу выхода

Уравнение Эйнштейна для внешнего фотоэффекта

Откуда максимальная кинетическая энергия

Максимальная скорость фотоэлектронов

Ответ: ;

Определение и уравнение фотоэффекта

Фотоэффект является одним из примеров проявления корпускулярных свойств света. Вылет электронов из освещенных тел, называется внешним фотоэффектом.

Сущность внутреннего фотоэффекта состоит в том, что при освещении полупроводников и диэлектриков от некоторых атомов отрываются электроны, которые, однако, в отличие от внешнего фотоэффекта, не выходят через поверхность тела, а остаются внутри него. В результате внутреннего фотоэффекта возникают электроны в зоне проводимости и сопротивление полупроводников и диэлектриков уменьшается.

При освещении границы раздела между полупроводниками с различным типом проводимости возникает электродвижущая сила. Это явление называется вентильным фотоэффектом.

Уравнение Эйнштейна для внешнего фотоэффекта

Основным уравнением, описывающим внешний фотоэффект, является уравнение Эйнштейна для внешнего фотоэффекта:

где – энергия фотона монохроматической волны света, — масса электрона, — работа выхода электрона из фотокатода.

Уравнение фотоэффекта (1) является следствием закона сохранения энергии. В соответствии с законами сохранения энергии и импульса, поглощение фотона свободными электронами невозможно, и фотоэффект возможен только на электронах, связанных в атомах, молекулах и ионах, а также на электронах твердых и жидких тел.

Из уравнения фотоэффекта существует ряд важных выводов, которые характеризуют это явление:

  1. Для данного фотокатода максимальная начальная скорость фотоэлектронов зависит от частоты падающего света и не зависит от его интенсивности.
  2. При постоянном спектральном составе падающего света число фотоэлектронов, вырываемых светом из фотокатода за единицу времени, и фототок насыщения пропорциональны энергетической освещенности фотокатода.
  3. Для каждого вещества фотокатода существует красная граница фотоэффекта (порог фотоэффекта) – минимальная частота , при которой еще возможен фотоэффект. Длина волны , соответствующая частоте , для большинства металлов находится в ультрафиолетовой части спектра.
Читайте также:  Blu ray качество что это

Примеры решения задач

Задание Красная граница фотоэффекта для некоторого метала . При какой частоте света оторвавшиеся от поверхности электроны полностью задерживаются обратным потенциалом ? Заряд электрона e, постоянная планка h, скорость света c.
Решение Основа для решения задачи – закон сохранения энергии и уравнение фотоэффекта.

Вылет электронов прекратится тогда, когда потенциальная энергия электрона (U) в задерживающем поле станет равной его кинетической энергии (E), то есть:

Запишем уравнение фотоэффекта, в которое входит кинетическая энергия электрона:

Подставим (1.1) в (1.2), получим:

(1.3), откуда:

Полагая, что красная граница фотоэффекта соответствует энергии фотонов, при которой скорость вырываемых с металла электронов равна нулю, получим:

Подставим (1.5) в (1.4), получим:

Ответ Искомая в задаче частота света может быть рассчитана по формуле:
Задание Металлическую пластинку (работа выхода A) освещают светом с длинной волны . На какое максимальное расстояние от пластинки (d) может удалиться фотоэлектрон, если вне пластинки создано задерживающее однородное электрическое поле с напряженностью E?

Решение Запишем уравнение фотоэффекта, в которое входит кинетическая энергия электрона:

По закону сохранения энергии, работа которую совершает электрическое поле при движении электрона (, равна максимальному значению кинетической энергии электрона при его максимальной удаленности от поверхности пластинки, следовательно, запишем:

Определить максимальную скорость vmax фотоэлектронов, вырываемых с поверхности серебра: 1) ультрафиолетовым излучением с длиной волны λ 1 =0,155 мкм; 2) γ-излучением с длиной волны λ 2 =2,47 пм.

Решение . Максимальную скорость фотоэлектронов определим из уравнения Эйнштейна для фотоэффекта:

Энергия фотона вычисляется по формуле ε = hc / λ , работа выхода А указана в табл. 20 для серебра A =4,7 эВ.

Кинетическая энергия фотоэлектрона в зависимости от того, какая скорость ему сообщается, может быть выражена или по классической формуле

Читайте также:  Хайп это в современном сленге

или по релятивистской

Скорость фотоэлектрона зависит от энергии фотона, вызывающего фотоэффект: если энергия фотона ε много меньше энергии покоя электрона Е , то может быть применена формула (2); если же ε сравнима по размеру с Е , то вычисление по формуле (2) приводит к грубой ошибке, в этом случае кинетическую энергию фотоэлектрона необходимо выражать по формуле (3)

1. В формулу энергии фотона ε = hc / λ подставим значения величин h , с и λ и, произведя вычисления, для ультрафиолетового излучения получим

Это значение энергии фотона много меньше энергии покоя электрона (0,51 МэВ). Следовательно, для данного случая максимальная кинетическая энергия фотоэлектрона в формуле (1) может быть выражена

по классической формуле (2) ε 1 = A + ½ m v 2 max , откуда

(4)

Выпишем величины, входящие в формулу (4): ε 1 =1,28 × 10 -18 Дж (вычислено выше); A =4,7 эВ = 4,7 × 1,6*10 -19 Дж = 0,75*10 -18 Дж; m =9,11 × 10 -31 кг (см. табл. 24).

Подставив числовые значения в формулу (4), найдем максимальную скорость:

2. Вычислим теперь энергию фотона γ-излучения:

Работа выхода электрона (A = 4,7 эВ) пренебрежимо мала по сравнению с энергией γ-фотона, поэтому можно принять, что максимальная кинетическая энергия электрона равна энергии фотона:

Так как в данном случае кинетическая энергия электрона сравнима с его энергией покоя, то для вычисления скорости электрона следует взять релятивистскую формулу кинетической энергии,

где E = m c 2 .

Выполнив преобразования, найдем

Сделав вычисления, получим

Следовательно, максимальная скорость фотоэлектронов, вырываемых γ-излучением,

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.