Меню Закрыть

Где находится контроллер заряда батареи телефона

Содержание

Внутри аккумулятора или батареи таких располагаются контроллер, два полевых транзистора для отсечки по перезаряду выше 4,2 В и отсечки при разряде менее 2,5 В, иногда и термопредохранитель на 85°С (перед взрывом они греются, почему и взрываются — вместе с телефоном) .

Контроллер так управляет процессом зарядки: 50% емкости набирается максимальным неизменным током, который записан в память контроллера. Если зарядка не способна дать такой ток — то тем, что может. Обычно это 1 час.

Затем начинается заряд с уменьшением тока. И здесь добавляют еще 50% емкости. Длительность этого процесса зависит от температуры (первая фаза не зависит: 50% аккумулятор принимает гарантированно без повышения температуры) и составляет 2…3 часа.

Можно зарядку производить вручную: подать на крайние выводы вольт не менее 5, можно больше, защита не даст взорваться, возьмет ровно такой ток, что ей предписан. Через час аккумулятор сам отсоединится от такого источника и получит всего 50% заряда. Вот вторую половину такая самоделка не обеспечит, защита не даст. А вот рассчитанная на плавное снижение тока зарядка — даст.

Внутри аккумулятора или батареи таких располагаются контроллер, два полевых транзистора для отсечки по перезаряду выше 4,2 В и отсечки при разряде менее 2,5 В, иногда и термопредохранитель на 85°С (перед взрывом они греются, почему и взрываются — вместе с телефоном) .

Контроллер так управляет процессом зарядки: 50% емкости набирается максимальным неизменным током, который записан в память контроллера. Если зарядка не способна дать такой ток — то тем, что может. Обычно это 1 час.

Затем начинается заряд с уменьшением тока. И здесь добавляют еще 50% емкости. Длительность этого процесса зависит от температуры (первая фаза не зависит: 50% аккумулятор принимает гарантированно без повышения температуры) и составляет 2…3 часа.

Можно зарядку производить вручную: подать на крайние выводы вольт не менее 5, можно больше, защита не даст взорваться, возьмет ровно такой ток, что ей предписан. Через час аккумулятор сам отсоединится от такого источника и получит всего 50% заряда. Вот вторую половину такая самоделка не обеспечит, защита не даст. А вот рассчитанная на плавное снижение тока зарядка — даст.

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.

Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки ("банки") на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути "мозг" контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection VoltageVOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release VoltageVOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection VoltageVODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Читайте также:  Byd f3 2008 отзывы владельцев недостатки

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V (Overdischarge Release VoltageVODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за "смерть" аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к "внешнему миру", то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить "банку" аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться "восстановительная" зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

Здесь обсуждаем проблемы только с калибровкой .

Калибровка — это принудительное приведения батареи в наиболее оптимальное для использования состояние, в результате которой происходит установка подходящих параметров контроллера самой батареи и контроллера аппарата, в результате чего батарея максимально долго исправно служит и держит заряд.

Прошу внимательно ознакамливаться с постами приведенными в начале обсуждения, варианты калибровки собраны — здесь.

Любые другие проблемы батарей и зарядок обсуждаются в теме — Вопросы и проблемы с батареей или зарядным устройством

Уважаемые пользователи! За вопросы и ответы которые не касаются непосредственно калибровки батареи — сразу сутки РО (режим только чтение). Без предупреждения! Еще раз — это значит, что здесь обсуждаются проблемы которые возникают только в процессе калибровки, сам процесс калибровки, конкретные последствия или невозможность ее произвести. Спасибо за понимание.

Сообщение отредактировал romchk — 13.02.11, 04:25

Сообщение отредактировал romchk — 02.06.09, 22:27

Описал детально свою проблему тут. Но недуг моего телефона более смахивает на обсуждаемое в этой теме.

Попробую сделать калибровку, отпишусь о результатах. Но есть сходу одна непонятка по поведению моего аппарата: когда происходят самопроизвольные отключения, ХАРД РЕСЕТА не происходит. Это при том, что резервная батарея не показывается в пункте "Электропитание" (а программа мониторинга состояния аккума показывает напряжение резервной батареи 0.0 V), т.е. как-будто её инет. Но вот ВРЕМЯ на аппарате после включения его отстаёт на столько, сколько он пребывал в выкл. состоянии.

Подскжите, как время-то может "простаивать", если ХР не происходит.

приветствую всех..
при 20% зарядки 3.725v. эт нормально? батарея течет.. заряжал разряжал ее уже рас 40.. помогите!
Сейчас замерил при 100% = 4.103v.

Сообщение отредактировал mrakobesik — 17.06.09, 04:26

:
HP iPAQ rw6815. полностью заряженной батареии хватает на просмотр 90 мин видео при макс яркости.
за ночь 30 процентов из ничего (все убито менеждером задач).

1. Разряжал до выключения кпк( 1% заряда) , после выключения подсоеденил моторчик от магнитофона + лампочку автомобильную(24в 5W) крутился моторчик и светила лампочка еще 15 часов(там наверно отключил ее контролер АКБ) , следовательно батарейка еще не убита .

Читайте также:  Маршрутизатор tenda ac6 настройка

2. Если батарейка не убита, значит неправильно ведет себя контроллер КПК .

3. Калибровка не помогла. Что за зверь такой контролер заряда КПК и где он находится, каким образом он хранит информацию о калибровке, если это железяка, то как обнулить данные калибровки, если это это программная штука, то как сбросить данные калиброки.

4. Новая АКБ поможет(имеется ввиду не будет ли у меня с новой батарейкой такиз глюков).

Всем заранее спасибо за ответ.

Сообщение отредактировал mitjah — 20.06.09, 20:34

У Вас видимо где-то утечка — может на материнке коммуникатора, может в самом аккуме ( если конечно действительно убиты все процессы ). Попробуйте посмотреть как разряжается аккум вне тела коммуникатора — выньте на ночь из коммуникатора, утром проверьте степень заряженности.

Что значит пляска ? Напряжение полностью заряженного лит-ион около 4,2В, разряжается обычно до 3,6 — 3,4 В. Приводимое в описании на аккум 3,7В — это средневычисленное значение напряжения при разряде от максимума до минимума.

Сообщение отредактировал GudVladSPB — 21.06.09, 22:44

Спасибо за ответы.

я имею ввиду контролер зараяда который в коммуникаторе а не батарее.
Я приобрел новую батарейку:

при 100% — 4188мв,
при 0%- 3670мв, (тут мне кажется должно быть поменьше)

такиеже показатели были и у старого акума.
Новый работает на таких условиях тоже не очень много(по ощущениям раза в 2-2.5 дольше), (40 минут бенчмарка и вкл вайфай и вкл БТ садят на 45%) учитывая что он усиленный(3000мА).

Калибровку на этапе зарядки аккумулятора нужно проводить при вкл или выкл коммуникаторе?

Этой калибровкой калибруется контролер батарейки, правильно?

Ну и про драйвер батарейки, что-то читал про какойто регистр куда он записывает какое напряжение значит 100 %, какое 0%. Если причина в драйвере, то почему со сменой прошивки глюки не пропадают ( Кстати если я себе запихну драйвер от такогоже КПК, но с нармальным режимом работы батарейки, это мне поможет?)

И если причина не в батарейке( купил нову батарейку заметного прироста работы не дала), значит в контролере КПК (повторюсь не АКБ).

Или :
GudVladSPB
У Вас видимо где-то утечка — может на материнке коммуникатора, может в самом аккуме ( если конечно действительно убиты все процессы ).

Прошу прощения за стиль, просто скурил все топики с батарейками, голова уже распухла до размеров комнаты.
Мот сутра все пойму)))

Хотя мот я непарвильно калибровал новую батарейку (1 раз)

Сообщение отредактировал mitjah — 23.06.09, 23:07

1. Контроллер зарядки ( чип на материнке коммуникатора ) занимается только зарядкой аккума и выбором источника для питания коммуникатора — внешний источник или аккумулятор. Его задача — сформировать правильный алгоритм зарядки аккума ( 1й этап — постоянным током до максимального напряжения на аккуме около 4,2 В, 2й этап — поддерживается постоянное напряжение 4,2 В, ток постепенно падает по мере зарядки); когда ток упадёт до 10 — 50 мА — зарядка полностью прекращается и снова включится только если напряжение на аккуме упадёт ниже определённого зачения или переподключить внешний источник ( но в этом случае критерий полной зарядки аккума будет выполнен сразу и зарядка опять прекратится ). Чип также контролирует температуру аккума — один из выводов на аккумуляторе это выход термистора расположенного в аккуме, по его сопротивлению контроллер зарядки и определяет температуру аккумулятора. Если ниже 0 градусов или выше заданного значениия — зарядка аппаратно ( в чипе контроллера зарядки ) запрещена. Также чип ограничивает ток потребления от внешнего источника.
Ток потребления от внешнего источника = ток зарядки аккумулятора + ток для работы коммуникатора
Величина ограничения может быть разной в зависимости от источника внешнего питания — порт USB или зарядное устройство ( штатное ЗУ обычно определяется по замкнутым контактам в разъеме USB ). Например в HTC Diamond2 при питании от порта ток потребления ограничен 450 мА, при питании от штатного ЗУ около 900 мА ( штатное ЗУ определяется по замкнутым контактам 2 и 3 (шина данных) в разъеме USB ). Если этого тока не хватает для работы коммуникатора, недостаток пополняет аккумулятор — разряжается.
Т.о. контроллер зарядки контролирует только максимальное значение напряжения на аккумуляторе, не допуская его превышения. До какого напряжения разрядится аккумулятор — его не колышет. Единственно — если при зарядке контроллер обнаруживает что напряжение на аккуме меньше 3В, то сначала ток зарядки контроллер ограничит величиной не более 50 мА пока напряжение на аккуме не достигнет 3,0В. Режим ограничен по времени — таким способом определяются плохие аккумуляторы, зарядка которых номинальным током может привести к разгерметизации банки ( взрыву ). Так же этот чип никоим образом не причастен к вычислению степени заряженности аккума.
Максимальное напряжение на аккумуляторе не должно превышать 4,2 В (если выше -резко сокращается срок службы аккума ), минимальное 3,4 — 3,6 В определяется производителем коммуникатора.

Читайте также:  Что сложнее bloodborne или dark souls

2. С выхода контроллера зарядки нестабилизированное напряжение = напряжению аккумулятора поступает на чип менеджера питания на материнке коммуникатора, и уже этот чип выдаёт несколько стабилизированных напряжений для питания узлов коммуникатора.
Нередко нестабильная работа коммуникатора или повышеноое потребление связано с этими чипами или с их окружением ( конденсаторы, диоды и т.д. )

3. Контроллер аккумулятора ( тот что расположен в самом аккумуляторе ) в основном необходим для защиты лит-ион банки от перенапряжения, переразрядки, коротких замыканий, переполюсовки входного напряжения. Неправильная эксплуатация лит-ион аккумуляторов ( в отличие от других типов ) может привести к печальным последствиям Аккумуляторы КПК (Пост #2713947), поэтому для них и была придумана защита в виде контроллера аккумулятора.
Во многих случаях ( но не всегда ) в контроллер аккумулятора добавляют ещё один чип, который участвует в вычислении степени заряженности аккумулятора. Об этом более подробно по ссылке Литиевые аккумуляторы — правила эксплуатации (Пост #2730352)
Если этого чипа в контроллере аккумулятора нет, степень заряженности вычисляется просто по напряжению — на материнке есть АЦП, который измеряет напряжение аккумулятора и по таблице зашитой в драйвер вычисляется степень заряженности аккума.

Сообщение отредактировал GudVladSPB — 26.07.09, 09:59

Многие читатели сайта спрашивают о том, что такое контроллер заряда литий─ионного аккумулятора, и для чего он нужен. Этот вопрос кратко упоминался в материалах, где описывались различные типы литиевых аккумуляторов. Этот тип аккумуляторных батарей практически всегда имеет в своём составе контроллер зарядки, ещё называемый платой защиты Battery Monitoring System (BMS). В этой заметке подробнее рассмотрим, что это за устройство, и как оно функционирует.

Что представляет собой контроллер зарядки Li─Ion аккумуляторов?

Простейший вариант контроллера зарядки литий─ионных АКБ можно увидеть, если разобрать аккумулятор планшетного компьютера или телефона. Он состоит из банки (аккумуляторного элемента) и печатной платы защиты BMS. Это и есть контроллер зарядки, который можно видеть на фото ниже.

Контроллер зарядки Li─Ion аккумулятора

Назначение контроллера защиты в том, что он следит за тем, чтобы банка не заряжалась выше напряжения 4,2 вольта. Литиевый аккумуляторный элемент имеет номинальное напряжение 3,7 вольта. Перезаряд и превышение напряжения выше 4,2 вольта могут привести к тому, что элемент выйдет из строя.

В аккумуляторах смартфонов и планшетов плата BMS следит за процессом заряда и разряда одного элемента (банки). В аккумуляторах ноутбуков таких банок несколько. Обычно от 4 до 8.

Контроллер зарядки и литий─ионные элементы аккумулятора ноутбука

Также контроллер следит за процессом разрядки аккумуляторного элемента. При падении напряжения ниже порогового (обычно 3 вольта) схема отключает банку от потребителя тока. В результате устройство, работающее от аккумулятора, просто выключается.
Среди прочих функций контроллера зарядки стоит отметить защиту от короткого замыкания. На некоторых платах защиты BMS устанавливается терморезистор для защиты аккумуляторного элемента от перегрева.

Платы защиты BMS для литий─ионных аккумуляторов

Контроллер, рассмотренный выше, является простейшим вариантом защиты BMS. На самом деле разновидностей таких плат гораздо больше и есть довольно сложные и дорогостоящие. В зависимости от сферы применения выделяют следующие виды:

  • Для портативной мобильной электроники;
  • Для бытовой техники;
  • Применяемые в возобновляемых источниках энергии.

Пример контроллера заряда для солнечной панели

При увеличении напряжения на аккумуляторе более 15 вольт срабатывают реле и размыкают цепь заряда. После этого источник энергии работает на предусмотренный для этого балласт. Как говорят специалисты, в случае с солнечными панелями это может дать нежелательные побочные эффекты.

В случае ветряных генераторов BMS контроллеры применяются обязательно. Контроллеры зарядки литий─ионных аккумуляторов для бытовой техники и мобильных устройств имеют существенные различия. А вот контроллеры аккумуляторов ноутбуков, планшетов и телефонов имеют одинаковую схему. Разница заключается только в количестве контролируемых аккумуляторных элементов.

Как зарядить литий─ионных аккумулятор без контроллера?

Здесь сразу стоит сказать, что заряжать Li─Ion банку в обход контроллера крайне не рекомендуется. В этом случае все функции контроллера зарядки вы должны будете выполнять самостоятельно. То есть, нужно будет вовремя отключить заряд при достижении верхнего порога напряжения, а также следить за температурой банки. Поэтому так делать крайне нежелательно.

Зарядка банки аккумулятора телефона без контроллера

Вместе с тем бывают ситуации, когда есть реальная необходимость в такой зарядке. Например, банка сильно разряжена и контроллер не позволяет зарядить её штатным способом. Такое бывает, если устройство долго не использовалось, и аккумулятор испытал глубокий разряд.

Тогда следует отпаять плату BMS, подключить зарядное устройство к выводам банки и провести зарядку. Конкретные параметры зарядки зависят от аккумуляторного элемента. Если банок несколько, как в батарее ноутбука, нужно будет определять разряженные и проводить их зарядку отдельно. В любом случае процесс зарядки литиевого аккумулятора должен идти под контролем. Нужно проверять напряжение элемента и прервать процесс при достижении верхнего порога по напряжению. Кроме того, следует следить за температурой банки.

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.