Меню Закрыть

Физика от чего зависит ускорение

Основные формулы для равноускоренного движения

Равноускоренное движение — самый простой вид неравномерного движения. Равноускоренным называется движение с ускорением, постоянным по модулю и направлению:

Δv — изменение скорости (“дельта v “), м/с;

Δt — промежуток времени, (“дельта t “)за которое произошло изменение скорости, с.

Из формулы (1) следует, что размерность ускорения будет выражаться в метрах на секунду в квадрате:

Второй закон Ньютона гласит:

F — сила, действующая на тело, Н;

m — масса тела, кг;

a — ускорение, м/с 2 .

Сила тяжести и ускорение свободного падения

При свободном падении на Землю все тела, независимо от их массы, движутся одинаково. Свободное движение является равноускоренным движением. Ускорение, с которым падают на Землю тела в пустоте, называется ускорением свободного падения (или ускорением силы тяжести). Условие пустоты или, что тоже самое, вакуума, требуется для исключения влияния сопротивления атмосферного воздуха. Сила притяжения Fт со стороны Земли на тело массой m, называется силой тяжести:

Определением ускорения силы тяжести впервые систематически занимался Галилео Галилей — итальянский математик, физик, астроном. Будучи профессором университета в городе Пиза, Галилей измерял время падения предметов с высоты местной, слегка наклонной, башни.

Рис. 1. Галилео Галилей измеряет ускорение свободного падения.

В результате этих наблюдений он пришел к следующим выводам:

  • Время падения не зависит от массы тела. Все тела падают одинаково;
  • Падение тел представляет собой равноускоренное движение с ускорением $ g = 9,81 < мover c^2>$ .

И хотя это открытие датировано 1589г., современное, общепринятое среднее значение g практически не отличается от этого значения. Когда от расчетов не требуется высокой точности, то принимают, что модуль g равен 10 м/с 2 .

Последовавшие за Галилеем более точные измерения показали, что значение g не является абсолютной константой, а зависит от местоположения измерений в разных точках Земли. Ответ на этот вопрос нашел английский ученый Исаак Ньютон.

Закон всемирного тяготения

В 1682 г. Ньютон открыл закон всемирного тяготения, из которого следует:

  • все тела притягиваются друг к другу;
  • сила тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними;
  • векторы сил тяготения направлены вдоль прямой, соединяющей тела.

Этот закон универсален, и для случая пары тел, одно из которых является произвольным телом массой m, а второй — Земля, в виде формулы выглядит так:

Mз — масса Земли, кг;

Rз — радиус Земли, м;

h — высота, на которой находится тело, относительно поверхности Земли, м;

G — гравитационная постоянная, равная 6,6720 * 10 -11 Н*м 2 * кг -2 .

Из формул (4) и (5) следует, что:

Из (6) следует, что ускорение силы тяжести будет зависеть от высоты h и величины радиуса Земли, который для обычных расчетов принимается равным примерно 6400 км. Но поскольку форма Земли не является идеальным шаром, а сплюснута к полюсам, то точные значения g будут отличаться от среднего значения в 9,81 м/с 2 :

  • максимальное значение gмакс = 9,83 м/с 2 — на полюсах Земли, где Rз меньше;
  • минимальное значение gмин = 9,79 м/с 2 — на экваторе Земли, где Rз больше.

Рис. 2. Зависимость ускорения свободного падения на полюсах, экваторе и от вращения Земли.

Из формулы (6) также следует, что ускорение силы тяжести на других планетах, имеющих массу, отличающуюся от массы Земли, будет для космонавтов значительно отличаться от привычных земных условий. Так, например:

  • На Марсе — gМарса = 3,86 м/с 2 ;
  • На Меркурии — gМеркурия = 3,7 м/с 2 ;
  • На Луне — gЛуны = 1,62 м/с 2 ;
  • На Нептуне — gНептуна = 11,0 м/с 2 .

Как определяют ускорение силы тяжести

Для точного измерения силы тяжести, а значит, и ускорения, используется прибор, называемый гравиметром. Прибор применяется при поиске полезных ископаемых и для сбора информации археологами, палеонтологами, гидрологами и представителями других профессий, изучающих поверхность Земли.

Рис. 3. Гравиметры:.

Следует упомянуть еще два фактора, влияющих на значение ускорения свободного падения:

  • Известно, что Земля вращается вокруг своей оси, имея при этом так называемое центростремительное ускорение, которое влияет на величину ускорения свободного падения;
  • Масса Земли распределена неравномерно, например, в местах расположения больших месторождений металлических руд ускорение силы тяжести будет больше, а там, где есть пустоты (газовые месторождения) ускорение будет несколько меньше.
Читайте также:  Розетка умный дом включение по смс

Эти факторы дают очень малые отклонения от средних значений g , но зато их регистрация позволяет, например, геологам находить новые месторождения полезных ископаемых.

Что мы узнали?

Итак, мы узнали, что такое ускорение силы тяжести. Сила тяжести возникает вследствие действия силы гравитации, подчиняющейся закону Ньютона (формула (5)). На Земле среднее значение ускорения силы тяжести gЗемли равно 9,81 м/с 2 . Для точного определения ускорения силы тяжести требуется использование современных приборов, называемых гравиметрами.

ФИЗИКА

Вопрос 1. Кинематика материальной точки (частицы). Скорость и ускорение при одномерном движении точки. Выражение для перемещения ΔX через скорость Vx. Выражение для ΔVx через ускорение .

Механика – часть науки о природе. Одним из разделов механики является кинематика. Кинематика – это раздел механики, посвященный изучению геометрических свойств движений без учета их масс и действующих на них сил. Основная задача механики – определить положение тела в любой момент времени. Время – непрерывно и неоднородно меняющаяся переменная. Положение тела – положение тела относительно других тел. Тело, размерами которого можно пренебречь в условиях данной задачи, называется материальной точкой. Совокупность тел, выделенная для рассмотрения, называется механической системой. Совокупность неподвижных друг относительно друга тел, по отношению к которым рассматривается движение, и отсчитывающих время часов образуют систему отсчета. Для того чтобы получить возможность описывать движение количественно, приходится связывать с телами, образующими систему отсчета, какую-либо систему координат, например, декартову.

Абсолютно твердое тело – тело, деформациями которого в условиях данной задачи можно пренебречь.

Движение твердого тела:

1) поступательное –это такое движение, при котором любая прямая, связанная с движущимся телом, остается параллельной самой себе.

2) вращательное – это такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Ось вращения может находиться вне тела.

Одномерным называется движение тела, при котором его положение в пространстве может быть полностью охарактеризовано при помощи одной координаты (например, положение поезда можно задать, указав расстояние вдоль железнодорожного полотна до станции отправления). Прямолинейное движение является важнейшим частным случаем одномерного. При движении тела его координата изменяется во времени, на языке математики это означает, что координата является функцией аргумента t.

Эту функцию можно задать при помощи таблицы, графика, аналитического выражения.

Для одномерного равноускоренного движения (скорость и ускорение):

ΔVx= Δt

Вопрос 2. Средняя скорость и среднее ускорение при прямолинейном движении частицы. Путь в случае изменения направления движения.

Средней скоростью называют отношение Δ к Δt.

= Δ / Δt

Δ – перемещение тела

сонаправлена с Δ .

Среднее ускорение — физическая величина, численно равная отношению изменения скорости ко времени, за которое оно произошло:

Криволинейное равноускоренное (равнопеременное) движение также можно рассматривать как одномерное. В этом случае используется обобщенная координата S, часто называемая путем. Эта координата соответствует длине пройденной траектории (длине дуги кривой). Таким образом, формула приобретает вид:

Вопрос 3. Равнопеременное прямолинейное движение. Выражения для ΔVx и Δx для равноускоренного движения.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

ΔVx= Δt

Вопрос 4*. Равнопеременное прямолинейное движение ( = const). Выражения для Vx(t) и x(t). Графики этих функций при различных знаках vx(t) и . Графический смысл перемещения Δx и ускорения на графике vx(t).

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Читайте также:  Xiaomi mi mix 2s 4pda форум

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Формула скорости равнопеременного движения в любой момент времени:

= + t

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени).

Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия.

График зависимости скорости от времени показывает, что

При этом перемещение численно равно площади фигуры 0abc.

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

Дата добавления: 2018-04-15 ; просмотров: 734 ; ЗАКАЗАТЬ РАБОТУ

История открытия

Учёные Древней Греции разделяли любое движение на два типа: естественное и принудительное. Перемещение тела под воздействием гравитации считалось естественным, так как не имело видимой причины и происходило само собой.

Аристотель считал, что скорость падения напрямую зависит от массы. Это ошибочное утверждение родилось в результате примитивных наблюдений. Философ приводил в пример движение к земле яблок и листьев. Очевидно, что последние летели гораздо медленнее. Исследователи тех времён ещё очень мало понимали в физике. Такие понятия, как сопротивление воздуха и ускорение были неизвестны.

Утверждения Аристотеля считались неоспоримым постулатом вплоть до начала XVII века. Галилео Галлилей решительно отверг древнюю классификацию движения. В результате проведения нескольких опытов с движением тела по наклонной плоскости, учёный ввёл понятие ускорения.

Определение ускорения свободного падения в физике

Основное внимание Галлилей уделял изучению процесса свободного падения. Самым знаменитым стал эксперимент, проведённый на Пизанской башне.

С сооружения высотой 60-м были одновременно сброшены два предмета:

  • маленький металлический шарик весом в пол фунта;
  • большая круглая бомба, весившая 100 фунтов.

Результат был просто ошеломляющим. Оба тела достигли земли практически одновременно, а небольшая разница была объяснена силой сопротивления воздушной среды. Надо заметить, что наука тех лет существенно отличалась от сегодняшней. Считалось, что воздух не мешает падению, а, напротив, увеличивает его скорость.

Ещё одним заблуждением того времени было утверждение о том, что любое движение со временем прекращается, даже если на его пути нет преград. Галлилей опроверг и этот ошибочный закон физики, введя определение инерции.

В XVI веке ещё не существовало точных хронометров. Из-за этого ускорение падения тел с Пизанской башни было рассчитано довольно грубо. Для более точного измерения учёный изучал равноускоренное движение шарика по наклонной плоскости. А более или менее правильное значение ускорения сумел вычислить Гюйгенс в 1660 г.

Физическая сущность

Свободным падением может называться равноускоренное движение тела в результате действующей на него силы тяжести, происходящее в вакууме. Атмосфера Земли способна тормозить ускорение и замедлять падающие предметы. Однако, если величина сопротивления воздуха небольшая, ей можно пренебречь. К примеру, в опыте Галилея на башне в Пизе использовались шарообразные предметы, обладающие аэродинамичной формой. В результате этого коэффициент торможения удалось свести к минимуму.

Читайте также:  Электростатические динамики своими руками

Ускорение у поверхности Земли не зависит от массы предмета — это постоянная величина, обозначающаяся латинской буквой g и составляющая 9,80665 м/с.^2. Из-за воздействия центробежных сил на экваторе его значение немного меньше, а на полюсах, соответственно, больше.

Величина ускорения свободного падения зависит от нескольких факторов:

  • географических координат, точнее, широты;
  • расстояния до поверхности планеты;
  • времени суток;
  • геомагнитных аномалий.

Вектор свободного падения всегда направлен вниз. Это можно наглядно увидеть, подбросив какой-либо предмет. Благодаря воздействию ускорения, его движение будет постепенно замедляться. Затем оно полностью остановится и направится в обратную сторону.

Формулы для расчёта

Галилей понимал, что исследование падения тел с Пизанской башни является несовершенным. Был поставлен новый эксперимент, в котором учёному удалось увеличить время движения и уменьшить сопротивление воздуха. Отполированные латунные шарики скатывались по желобам, расположенным под определённым углом наклона. В результате были выведен физический закон, согласно которому все падающие тела движутся с одинаковой, постоянно увеличивающейся скоростью.

Формула для нахождения: g=G (M/R ^ 2), где:

  • G — гравитационная постоянная;
  • M — масса планеты;
  • R — радиус планеты.

При помощи этой зависимости можно рассчитать значение g на поверхности любой планеты во вселенной.

Существуют задачи, для решения которых необходим более точный расчёт. В таком случае используется другая, расширенная формула: g=G (M/(R2+h)), ​где h — это высота над поверхностью планеты.

Стоит помнить, что для максимальной точности расчётов придётся учитывать большое количество факторов. Ускорение может измеряться при помощи специального прибора — гравиметра.

Ускорение на других планетах

Как видно из формулы, гравитационное ускорение напрямую зависит от массы и радиуса планеты. Из этого следует, что значение g на других планетах будет отличаться от земного.

Таблица показателя ускорения g для основных объектов Солнечной системы.

НаименованиеУскорение, м/с. 2
Солнце274,01
Венера8,87
Земля9,81
Марс3,72
Юпитер25,8
Сатурн11,54
Уран9,04
Меркурий3,73
Нептун11,33
Луна1,69

Солнце является самым большим объектом в солнечной системе, его масса почти в 300 тыс. раз больше земной. Но как можно заметить из таблицы, ускорение на поверхности звезды превышает земное всего в 28 раз. Это объясняется огромным радиусом светила.

Во вселенной существуют очень компактные объекты с невероятной плотностью и чудовищным притяжением. Если взять среднюю нейтронную звезду с радиусом 13 км и массой 2,5*10 30 кг, то ускорение на её поверхности превысит земное в 100 млрд раз и составит довольно внушительное число — 9,87*10^11м/с. 2

Воздействие перегрузок на человека

Благодаря научно-техническому прогрессу и стремительному развитию технологий, современный человек имеет возможность пользоваться довольно быстрыми средствами передвижения. Чтобы попасть в любую точку планеты на самолёте, потребуется не более суток. Быстрая скорость передвижения неминуемо связана с таким понятием, как перегрузка.

Любая перегрузка являет собой отношение двух ускорений:

  • негравитационного;
  • свободного падения.

За единицу измерения принято брать гравитационное ускорение на Земле — 9,80665 м/с². Таким образом, нулевую перегрузку можно ощутить на себе лишь в невесомости.

Перегрузка является векторной величиной. Для людей и других живых организмов огромное значение имеет её направление. Это связано с тем, что организм приспособлен к постоянному воздействию гравитационного ускорения.

Характер положительной перегрузки заключается в том, что её вектор направлен вниз — от головы к ногам. Кровь оттекает от мозга и при показателе более 10 g человек может потерять сознание за считаные секунды. При отрицательном значении кровь, напротив, бьёт в голову. Это переносится гораздо хуже и может привести к кровоизлиянию и смерти.

Показатель перегрузки для различных ситуаций:

ПримерПоказатель, g
Статичное положение,1
Взлёт пассажирского авиалайнера1,5
Приземление на парашюте1,8
Раскрытие купола10−16
Спуск космического аппарата «Союз»3−4
Высший пилотаж на спортивном самолётеот -7 до +12
Максимальная длительная перегрузка, переносимая человеком8−10
Аварийный спуск из космоса20−26
Рекордная не смертельная перегрузка при автокатастрофе214
Торможение автоматического аппарата в атмосфере Венеры350
Предел прочности твердотельного накопителя информации1500
Снаряд в момент выстрела47 тыс.

Военным и спортивным лётчикам приходится постоянно испытывать большие перегрузки. Для уменьшения вредного воздействия на организм существуют специальные защитные костюмы.

Переносить перегрузку лучше всего лёжа на спине. Именно в таком положении находятся космонавты при взлёте ракет.

Рекомендуем к прочтению

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code

Adblock detector