Меню Закрыть

Доказать с помощью определения предела функции

Содержание

Доброго времени суток!

Доказать через определение предела, подробнее, пожалуйста, т.к. не понимаю, что делать нужно.

  1. lim x стремится к бесконечности (x^2+x+1)/(2x+5) = бесконечности
  2. Lim x стремится к единице (x^4+2x^3+5) = 8
  3. Lim x стремится к бесконечности (2x-1)/(x+3) = 2

Заранее спасибо ! 🙂

задан 19 Ноя ’13 12:40

1) разделите числитель и знаменатель на $%x$%. Числитель будет стремиться к бесконечности, знаменатель — к двум, т.е. частное тоже к бесконечности.

2) просто подставьте $%x=1$%.

3) числитель и знаменатель делим на $%x$% и применяем теорему о пределе частного: предел числителя равен 2, предел знаменателя равен 1.

Нужно доказать, а не решить, вот в чем проблема, с помощью, как я поняла определения Коши.

Слово "доказать" означает вывести из известных положений: аксиом, опредлений, лемм, теорем. Все перечисленные утверждения выводятся из теорем о пределах. Если же этими теоремами пользоваться не разрешено, то в условии задачи такая вещь должна быть явно оговорена. Рассуждения при этом становятся несколько более сложными, но возможно доказательство, опирающееся только на определение предела и на элементарные свойства неравенств. Если нужно, я по каждому пункту могу продемонстрировать, как это делается.

1 ответ

3) Докажем из определения, что $$limlimits_frac<2x-1>=2.$$ Рассмотрим разность $$2-frac<2x-1>=frac<7><2(x+3)>.$$ Мы хотим, чтобы эта величина стала по модулю меньше произвольно заданного положительного $%varepsilon$%, поэтому напишем желаемое неравенство и поймём, при каких $%x$% (достаточно больших по модулю) оно заведомо будет выполнено. Легко понять, что неравенство $$frac7 <2|x+3|>frac7<2varepsilon>$%. Это значит, что $%x+3 > frac7<2varepsilon>$% или $%x+3 3+frac7<2varepsilon>$%, то из свойств неравенств будет ясно, что для положительных $%x$% будет верно первое из условий (даже с "запасом"), а для отрицательных — второе условие. Тогда из определения предела следует доказываемый факт.

отвечен 19 Ноя ’13 15:46

falcao
242k ● 1 ● 34 ● 48

Если вас не затруднит, то напишите, пожалуйста, как это же доказательство нужно сделать, но для лимита равного не конкретному числу, как в этом примере числу 2, а бесконечности. А будет ещё лучше, если для оставшихся двух моих примеров, чтоб уж наверняка понимать как и что делать. Заранее спасибо 🙂

Это достаточно просто: пусть в примере 1 число $%x$% достаточно большое — например, $%xge5$%. Тогда знаменатель не превосходит $%3x$%, а числитель больше $%x^2$%. Сама дробь при этом больше $%x/3$%. Чтобы она оказалась больше заданного числа $%M$%, достаточно положить $%xge3M$%. Скажем, при $%xge3000$% значение дроби будет больше тысячи и т.п.

Пример 2 там тоже простой. Рассмотрим разность функции и значения предполагаемого предела. Получится $%(x^4-1)+2(x^3-1)$%. Выделим множитель $%x-1$% и посмотрим на то, что осталось. Там будет $%x^3+x^2+x+1+2(x^2+x+1)=x^3+3x^2+3x+3$%, хотя конкретный вид не так важен. Потребуем сначала, чтобы было $%|x-1| (20 Ноя ’13 17:30) falcao

Первое определение предела функции (по Гейне)

Число a называется пределом функции f ( x ) в точке x :
,
если
1) существует такая проколотая окрестность точки x , на которой функция определена;
2) для любой последовательности < xn > , сходящейся к x :
, элементы которой принадлежат окрестности ,
последовательность < f ( xn )> сходится к a :
.

Здесь x и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность может быть как двусторонней, так и односторонней.

Запишем это определение с помощью логических символов существования и всеобщности:
.

Второе определение предела функции (по Коши)

Число a называется пределом функции f ( x ) в точке x :
,
если
1) существует такая проколотая окрестность точки x , на которой функция определена;
2) для любого положительного числа ε > 0 существует такое число δε > 0 , зависящее от ε , что для всех x , принадлежащих проколотой δε — окрестности точки x :
,
значения функции f ( x ) принадлежат ε — окрестности точки a :
.

Точки x и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность также может быть как двусторонней, так и односторонней.

Запишем это определение с помощью логических символов существования и всеобщности:
.

Читайте также:  Что такое blu ray диск

В этом определении используются окрестности с равноудаленными концами. Можно дать и эквивалентное определение, используя произвольные окрестности точек.

Определение с использованием произвольных окрестностей
Число a называется пределом функции f ( x ) в точке x :
,
если
1) существует такая проколотая окрестность точки x , на которой функция определена;
2) для любой окрестности U ( a ) точки a существует такая проколотая окрестность точки x , что для всех x , принадлежащих проколотой окрестности точки x :
,
значения функции f ( x ) принадлежат окрестности U ( a ) точки a :
.

С помощью логических символов существования и всеобщности это определение можно записать так:
.

На странице «Окрестность точки» мы показали, что определение предела функции с использованием более простой окрестности с равноудаленными концами эквивалентно определению, в котором используется произвольная окрестность. Формулировка второго определения по Коши имеет более общий вид, и оно часто используется при доказательстве теорем. Первое определение, в математическом смысле, проще. Его удобно применять в вычислениях.

Более подробно определение Коши для конечных точек рассматривается на странице «Определение предела функции в конечной точке»; для бесконечно удаленных точек – на странице «Определение предела функции на бесконечности».

Односторонние и двусторонние пределы

Приведенные выше определения универсальны в том смысле, что их можно использовать для любых типов окрестностей. Если, в качестве мы используем левостороннюю проколотую окрестность конечной точки, то получим определение левостороннего предела . Если в качестве окрестности использовать окрестность бесконечно удаленной точки, то получим определение предела на бесконечности.

Для определения предела по Гейне это сводится к тому, что на произвольную, сходящуюся к , последовательность накладывается дополнительное ограничение – ее элементы должны принадлежать соответствующей проколотой окрестности точки .

Для определения предела по Коши нужно в каждом случае преобразовать выражения и в неравенства, используя соответствующие определения окрестности точки.
См. «Окрестность точки».

Определение, что точка a не является пределом функции

Часто возникает необходимость использовать условие, что точка a не является пределом функции при . Построим отрицания к изложенным выше определениям. В них мы предполагаем, что функция f ( x ) определена на некоторой проколотой окрестности точки x . Точки a и x могут быть как конечными числами, так и бесконечно удаленными. Все сформулированное ниже относится как к двусторонним, так и к односторонним пределам.

По Гейне.
Число a не является пределом функции f ( x ) в точке x : ,
если существует такая последовательность < xn > , сходящаяся к x :
,
элементы которой принадлежат окрестности ,
что последовательность < f ( xn )> не сходится к a :
.
.

По Коши.
Число a не является пределом функции f ( x ) в точке x :
,
если существует такое положительное число ε > 0 , так что для любого положительного числа δ > 0 , существует такое x , принадлежащее проколотой δ — окрестности точки x :
,
что значение функции f ( x ) не принадлежит ε — окрестности точки a :
.
.

Разумеется, если точка a не является пределом функции при , то это не означает, что у нее не может быть предела. Возможно, существует предел , но он не равен a . Также возможен случай, когда функция определена в проколотой окрестности точки , но не имеет предела при .

Например, функция определена при , но предела не существует. Для доказательства возьмем последовательность . Она сходится к точке 0 : . Поскольку , то .
Возьмем последовательность . Она также сходится к точке 0 : . Но поскольку , то .
Тогда предел не может равняться никакому числу a . Действительно, при , существует последовательность , с которой . Поэтому любое отличное от нуля число не является пределом. Но также не является пределом, поскольку существует последовательность , с которой .

Эквивалентность определений предела по Гейне и по Коши

Теорема
Определения предела функции по Гейне и по Коши эквивалентны.

При доказательстве мы предполагаем, что функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). Точка a также может быть конечной или бесконечно удаленной.

Доказательство Гейне ⇒ Коши

Пусть функция имеет в точке предел a согласно первому определению (по Гейне). То есть для любой последовательности , принадлежащей проколотой окрестности точки и имеющей предел
(1) ,
предел последовательности равен a :
(2) .

Читайте также:  Ремень генератора ваз 2105 карбюратор

Покажем, что функция имеет предел в точке по Коши. То есть для любого существует , что для всех .

Допустим противное. Пусть условия (1) и (2) выполнены, но функция не имеет предела по Коши. То есть существует такое , что для любого существует , так что
.

Возьмем , где n – натуральное число. Тогда существует , причем
.
Таким образом мы построили последовательность , сходящуюся к , но предел последовательности не равен a . Это противоречит условию теоремы.

Первая часть доказана.

Доказательство Коши ⇒ Гейне

Пусть функция имеет в точке предел a согласно второму определению (по Коши). То есть для любого существует , что
(3) для всех .

Покажем, что функция имеет предел a в точке по Гейне.
Возьмем произвольное число . Согласно определению Коши, существует число , так что выполняется (3).

Возьмем произвольную последовательность , принадлежащую проколотой окрестности и сходящуюся к . По определению сходящейся последовательности, для любого существует , что
при .
Тогда из (3) следует, что
при .
Поскольку это выполняется для любого , то
.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.

Автор: Олег Одинцов . Опубликовано: 27-04-2018 Изменено: 31-03-2019

В этой статье мы расскажем, что из себя представляет предел функции. Сначала поясним общие моменты, которые очень важны для понимания сути этого явления.

Понятие предела

В математике принципиально важным является понятие бесконечности, обозначаемое символом ∞ . Его следует понимать как бесконечно большое + ∞ или бесконечно малое — ∞ число. Когда мы говорим о бесконечности, часто мы имеем в виду сразу оба этих ее смысла, однако запись вида + ∞ или — ∞ не стоит заменять просто на ∞ .

Запись предела функции имеет вид lim x → x 0 f ( x ) . В нижней части мы пишем основной аргумент x , а с помощью стрелочки указываем, к какому именно значению x 0 он будет стремиться. Если значение x 0 является конкретным действительным числом, то мы имеем дело с пределом функции в точке. Если же значение x 0 стремится к бесконечности (не важно, ∞ , + ∞ или — ∞ ), то следует говорить о пределе функции на бесконечности.

Предел бывает конечным и бесконечным. Если он равен конкретному действительному числу, т.е. lim x → x 0 f ( x ) = A , то его называют конечным пределом, если же lim x → x 0 f ( x ) = ∞ , lim x → x 0 f ( x ) = + ∞ или lim x → x 0 f ( x ) = — ∞ , то бесконечным.

Если мы не можем определить ни конечное, ни бесконечное значение, это значит, что такого предела не существует. Примером этого случая может быть предел от синуса на бесконечности.

Что такое предел функции

В этом пункте мы объясним, как найти значение предела функции в точке и на бесконечности. Для этого нам нужно ввести основные определения и вспомнить, что такое числовые последовательности, а также их сходимость и расходимость.

Число A является пределом функции f ( x ) при x → ∞ , если последовательность ее значений будет сходиться к A для любой бесконечно большой последовательности аргументов (отрицательной или положительной).

Запись предела функции выглядит так: lim x → ∞ f ( x ) = A .

При x → ∞ предел функции f ( x ) является бесконечным, если последовательность значений для любой бесконечно большой последовательности аргументов будет также бесконечно большой (положительной или отрицательной).

Запись выглядит как lim x → ∞ f ( x ) = ∞ .

Докажите равенство lim x → ∞ 1 x 2 = 0 с помощью основного определения предела для x → ∞ .

Решение

Начнем с записи последовательности значений функции 1 x 2 для бесконечно большой положительной последовательности значений аргумента x = 1 , 2 , 3 , . . . , n , . . . .

1 1 > 1 4 > 1 9 > 1 16 > . . . > 1 n 2 > . . .

Мы видим, что значения будут постепенно уменьшаться, стремясь к 0 . См. на картинке:

Далее мы запишем то же самое, но для бесконечно большой отрицательной последовательности.

x = — 1 , — 2 , — 3 , . . . , — n , . . .

1 1 > 1 4 > 1 9 > 1 16 > . . . > 1 — n 2 > . . .

Здесь тоже видно монотонное убывание к нулю, что подтверждает верность данного в условии равенства:

Читайте также:  Цвет выделения текста в ворде не убирается

Ответ: Верность данного в условии равенства подтверждена.

Вычислите предел lim x → ∞ e 1 10 x .

Решение

Начнем, как и раньше, с записи последовательностей значений f ( x ) = e 1 10 x для бесконечно большой положительной последовательности аргументов. Например, x = 1 , 4 , 9 , 16 , 25 , . . . , 10 2 , . . . → + ∞ .

e 1 10 ; e 4 10 ; e 9 10 ; e 16 10 ; e 25 10 ; . . . ; e 100 10 ; . . . = = 1 , 10 ; 1 , 49 ; 2 , 45 ; 4 , 95 ; 12 , 18 ; . . . ; 22026 , 46 ; . . .

Мы видим, что данная последовательность бесконечно положительна, значит, f ( x ) = lim x → + ∞ e 1 10 x = + ∞

Переходим к записи значений бесконечно большой отрицательной последовательности, например, x = — 1 , — 4 , — 9 , — 16 , — 25 , . . . , — 10 2 , . . . → — ∞ .

e — 1 10 ; e — 4 10 ; e — 9 10 ; e — 16 10 ; e — 25 10 ; . . . ; e — 100 10 ; . . . = = 0 , 90 ; 0 , 67 ; 0 , 40 ; 0 , 20 ; 0 , 08 ; . . . ; 0 , 000045 ; . . . x = 1 , 4 , 9 , 16 , 25 , . . . , 10 2 , . . . → ∞

Поскольку она тоже стремится к нулю, то f ( x ) = lim x → ∞ 1 e 10 x = 0 .

Наглядно решение задачи показано на иллюстрации. Синими точками отмечена последовательность положительных значений, зелеными ­ – отрицательных.

Ответ: lim x → ∞ e 1 10 x = + ∞ , п р и x → + ∞ 0 , п р и x → — ∞ .

Перейдем к методу вычисления предела функции в точке. Для этого нам нужно знать, как правильно определить односторонний предел. Это пригодится нам и для того, чтобы найти вертикальные асимптоты графика функции.

Число B является пределом функции f ( x ) слева при x → a в том случае, когда последовательность ее значений сходится к данному числу при любой последовательности аргументов функции x n , сходящейся к a , если при этом ее значения остаются меньше a ( x n a ).

Такой предел на письме обозначается как lim x → a — 0 f ( x ) = B .

Теперь сформулируем, что такое предел функции справа.

Число B является пределом функции f ( x ) справа при x → a в том случае, когда последовательность ее значений сходится к данному числу при любой последовательности аргументов функции x n , сходящейся к a , если при этом ее значения остаются больше a ( x n > a ).

Этот предел мы записываем как lim x → a + 0 f ( x ) = B .

Мы можем найти предел функции f ( x ) в некоторой точке тогда, когда для нее существуют равные пределы с левой и правой стороны, т.е. lim x → a f ( x ) = lim x → a — 0 f ( x ) = lim x → a + 0 f ( x ) = B . В случае бесконечности обоих пределов предел функции в исходной точке также будет бесконечен.

Теперь мы разъясним данные определения, записав решение конкретной задачи.

Докажите, что существует конечный предел функции f ( x ) = 1 6 ( x — 8 ) 2 — 8 в точке x 0 = 2 и вычислите его значение.

Решение

Для того чтобы решить задачу, нам потребуется вспомнить определение предела функции в точке. Для начала докажем, что у исходной функции имеется предел слева. Запишем последовательность значений фукнции, которая будет сходиться к x 0 = 2 , если x n 2 :

f ( — 2 ) ; f ( 0 ) ; f ( 1 ) ; f 1 1 2 ; f 1 3 4 ; f 1 7 8 ; f 1 15 16 ; . . . ; f 1 1023 1024 ; . . . = = 8 , 667 ; 2 , 667 ; 0 , 167 ; — 0 , 958 ; — 1 , 489 ; — 1 , 747 ; — 1 , 874 ; . . . ; — 1 , 998 ; . . . → — 2

Поскольку приведенная последовательность сводится к — 2 , мы можем записать, что lim x → 2 — 0 1 6 x — 8 2 — 8 = — 2 .

Далее докажем наличие предела справа: запишем аргументы в последовательности, которая будет сходиться к x 0 = 2 , если x n > 2 :

6 , 4 , 3 , 2 1 2 , 2 1 4 , 2 1 8 , 2 1 16 , . . . , 2 1 1024 , . . . → 2

Значения функции в этой последовательности будут выглядеть так:

f ( 6 ) ; f ( 4 ) ; f ( 3 ) ; f 2 1 2 ; f 2 3 4 ; f 2 7 8 ; f 2 15 16 ; . . . ; f 2 1023 1024 ; . . . = = — 7 , 333 ; — 5 , 333 ; — 3 , 833 ; — 2 , 958 ; — 2 , 489 ; — 2 , 247 ; — 2 , 124 ; . . . , — 2 , 001 , . . . → — 2

Данная последовательность также сходится к — 2 , значит, lim x → 2 + 0 1 6 ( x — 8 ) 2 — 8 = — 2 .

Мы получили, что пределы с правой и левой стороны у данной функции будут равными, значит, предел функции f ( x ) = 1 6 ( x — 8 ) 2 — 8 в точке x 0 = 2 существует, и lim x → 2 1 6 ( x — 8 ) 2 — 8 = — 2 .

Вы можете увидеть ход решения на иллюстрации (зеленые точки– последовательность значений, сходящаяся к x n 2 , синие – к x n > 2 ).

Ответ: Пределы с правой и левой стороны у данной функции будут равными, значит, предел функции существует, и lim x → 2 1 6 ( x — 8 ) 2 — 8 = — 2 .

Чтобы более глубоко изучить теорию пределов, советуем вам прочесть статью о непрерывности функции в точке и основных видах точек разрыва.

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.