Меню Закрыть

Что такое уровень языка программирования

В настоящее время в мире существует несколько сотен реально используемых языков программирования. Для каждого есть своя область применения.

Любой алгоритм, как мы знаем, есть последовательность предписаний, выполнив которые можно за конечное число шагов перейти от исходных данных к результату. В зависимости от степени детализации предписаний обычно определяется уровень языка программирования — чем меньше детализация, тем выше уровень языка.

По этому критерию можно выделить следующие уровни языков программирования:

  • машинные;
  • машинно-оpиентиpованные (ассемблеpы);
  • машинно-независимые (языки высокого уровня).

Машинные языки и машинно-ориентированные языки— это языки низкого уровня, требующие указания мелких деталей процесса обработки данных. Языки же высокого уровня имитируют естественные языки, используя некоторые слова разговорного языка и общепринятые математические символы. Эти языки более удобны для человека.

Языки высокого уровня делятся на:

  • процедурные (алгоритмические) (Basic, Pascal, C и др.), которые предназначены для однозначного описания алгоритмов; для решения задачи процедурные языки требуют в той или иной форме явно записать процедуру ее решения;
  • логические (Prolog, Lisp и др.), которые ориентированы не на разработку алгоритма решения задачи, а на систематическое и формализованное описание задачи с тем, чтобы решение следовало из составленного описания;
  • объектно-ориентированные (Object Pascal, C++, Java и др.), в основе которых лежит понятие объекта, сочетающего в себе данные и действия над нами. Программа на объектно-ориентированном языке, решая некоторую задачу, по сути описывает часть мира, относящуюся к этой задаче. Описание действительности в форме системы взаимодействующих объектов естественнее, чем в форме взаимодействующих процедур.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8923 — | 7231 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Уровни языков программирования.

Лекция 9. Языки программирования.

Контрольные вопросы

1.Что такое алгоритм?

2.Что такое исполнитель алгоритма?

3. Какие основные свойства алгоритмов?

4. В какой форме записываются алгоритмы?

5. Что такое графический способ записи алгоритма?

6. Что такое псевдокод?

7. Что такое базовые алгоритмические структуры?

8. Какие циклы называют итерационными?

9. Чем отличается программный способ записи алгоритмов от других?

9.2. Какие у машинных языков достоинства и недостатки?

9.3. В чем преимущества алгоритмических языков перед машинными?

9.4. Какие компоненты образуют алгоритмический язык?

9.5. Какие понятия используют алгоритмические языки?

В настоящее время в мире существует несколько сотен реально используемых языков программирования. Для каждого есть своя область применения.

Любой алгоритм, как мы знаем, есть последовательность предписаний, выполнив которые можно за конечное число шагов перейти от исходных данных к результату. В зависимости от степени детализации предписаний обычно определяется уровень языка программирования — чем меньше детализация, тем выше уровень языка.

По этому критерию можно выделить следующие уровни языков программирования:

  • машинные;
  • машинно-оpиентиpованные (ассемблеpы);
  • машинно-независимые (языки высокого уровня).

Машинные языки и машинно-ориентированные языки— это языки низкого уровня, требующие указания мелких деталей процесса обработки данных. Языки же высокого уровня имитируют естественные языки, используя некоторые слова разговорного языка и общепринятые математические символы. Эти языки более удобны для человека.

Языки высокого уровня делятся на:

  • процедурные (алгоритмические) (Basic, Pascal, C и др.), которые предназначены для однозначного описания алгоритмов; для решения задачи процедурные языки требуют в той или иной форме явно записать процедуру ее решения;
  • логические (Prolog, Lisp и др.), которые ориентированы не на разработку алгоритма решения задачи, а на систематическое и формализованное описание задачи с тем, чтобы решение следовало из составленного описания;
  • объектно-ориентированные (Object Pascal, C++, Java и др.), в основе которых лежит понятие объекта, сочетающего в себе данные и действия над нами. Программа на объектно-ориентированном языке, решая некоторую задачу, по сути описывает часть мира, относящуюся к этой задаче. Описание действительности в форме системы взаимодействующих объектов естественнее, чем в форме взаимодействующих процедур.

9.2. Какие у машинных языков достоинства и недостатки?

Каждый компьютер имеет свой машинный язык, то есть свою совокупность машинных команд, которая отличается количеством адресов в команде, назначением информации, задаваемой в адресах, набором операций, которые может выполнить машина и др.

При программировании на машинном языке программист может держать под своим контролем каждую команду и каждую ячейку памяти, использовать все возможности имеющихся машинных операций.

Но процесс написания программы на машинном языке очень трудоемкий и утомительный. Программа получается громоздкой, труднообозримой, ее трудно отлаживать, изменять и развивать.

Поэтому в случае, когда нужно иметь эффективную программу, в максимальной степени учитывающую специфику конкретного компьютера, вместо машинных языков используют близкие к ним машинно-ориентированные языки (ассемблеры).

9.3. В чем преимущества алгоритмических языков перед машинными?

Читайте также:  Программный разгон процессора intel

Основные преимущества таковы:

  • алфавит алгоритмического языка значительно шире алфавита машинного языка, что существенно повышает наглядность текста программы;
  • набор операций, допустимых для использования, не зависит от набора машинных операций, а выбирается из соображений удобства формулирования алгоритмов решения задач определенного класса;
  • формат предложений достаточно гибок и удобен для использования, что позволяет с помощью одного предложения задать достаточно содержательный этап обработки данных;
  • требуемые операции задаются с помощью общепринятых математических обозначений;
  • данным в алгоритмических языках присваиваются индивидуальные имена, выбираемые программистом;
  • в языке может быть предусмотрен значительно более широкий набор типов данных по сравнению с набором машинных типов данных.

Таким образом, алгоритмические языки в значительной мере являются машинно-независимыми. Они облегчают работу программиста и повышают надежность создаваемых программ.

9.4. Какие компоненты образуют алгоритмический язык?

Алгоритмический язык – это система обозначений для формальной записи алгоритмов над величинами. Алгоритмический язык дает возможность составлять программы – то есть алгоритмы для исполнения машиной и записываемые на специальных языках программирования. Можно сказать, что алгоритмический язык — это система обозначений и понятий, присущих в той или иной форме любому языку программирования.

Алгоритмический язык (как и любой другой язык) образуют три его составляющие: алфавит, синтаксис и семантика.

Алфавит — это фиксированный для данного языка набор основных символов, т.е. "букв алфавита", из которых должен состоять любой текст на этом языке — никакие другие символы в тексте не допускаются.

Синтаксисэто правила построения фраз, позволяющие определить, правильно или неправильно написана та или иная фраза. Точнее говоря, синтаксис языка представляет собой набор правил, устанавливающих, какие комбинации символов являются осмысленными предложениями на этом языке.

Семантика определяет смысловое значение предложений языка. Являясь системой правил истолкования отдельных языковых конструкций,семантика устанавливает, какие последовательности действий описываются теми или иными фразами языка и, в конечном итоге, какой алгоритм определен данным текстом на алгоритмическом языке.

9.5. Какие понятия используют алгоритмические языки?

Каждое понятие алгоритмического языка подразумевает некоторую синтаксическую единицу (конструкцию) и определяемые ею свойства программных объектов или процесса обработки данных.

Понятие языка определяется во взаимодействии синтаксических и семантических правил. Синтаксические правила показывают, как образуется данное понятие из других понятий и букв алфавита, а семантические правила определяют свойства данного понятия

Основными понятиями в алгоритмических языках обычно являются следующие.

1. Имена (идентификаторы) — употpебляются для обозначения объектов пpогpаммы(пеpеменных, массивов, функций и дp.).

2. Опеpации. Типы операций:

· аpифметические опеpации + , — , * , / и дp. ;

· логические опеpации и , или , не;

· опеpации отношения , = , = , <> ;

· опеpация сцепки (иначе, "присоединения", "конкатенации" ) символьных значений дpуг с другом с образованием одной длинной строки; изображается знаком "+".

3. Данныевеличины, обpабатываемые пpогpаммой. Имеется тpи основных вида данных: константы, пеpеменные и массивы.

  • Константы — это данные, которые зафиксированы в тексте программы и не изменяются в процессе ее выполнения.

    • числовые 7.5 , 12 ;
    • логические да(истина), нет(ложь);
    • символьные (содержат ровно один символ) "А" , "+" ;
    • литеpные (содержат произвольное количество символов) "a0", "Мир", "" (пустая строка).
    • Пеpеменные обозначаются именами и могут изменять свои значения в ходе выполнения пpогpаммы. Пеpеменные бывают целые, вещественные, логические, символьные и литерные.
    • Массивы— последовательности однотипных элементов, число которых фиксировано и которым присвоено одно имя. Положение элемента в массиве однозначно определяется его индексами (одним, в случае одномерного массива, или несколькими, если массив многомерный). Иногда массивы называют таблицами.

    4. Выpажения — пpедназначаются для выполнения необходимых вычислений, состоят из констант, пеpеменных, указателей функций (напpимеp, exp(x)), объединенных знаками опеpаций.

    Выражения записываются в виде линейных последовательностей символов(без подстрочных и надстрочных символов, "многоэтажных" дробей и т.д.), что позволяет вводить их в компьютер, последовательно нажимая на соответствующие клавиши клавиатуры.

    Различают выражения арифметические, логические и строковые.

    • Арифметические выражения служат для определения одного числового значения. Например, (1+sin(x))/2. Значение этого выражения при x=0 равно 0.5, а при x=p/2 — единице.
    • Логические выражения описывают некоторые условия, которые могут удовлетворяться или не удовлетворяться. Таким образом, логическое выражение может принимать только два значения — "истина" или "ложь" (да или нет). Рассмотрим в качестве примера логическое выражение x*x + y*y
      | следующая лекция ==>
      Лекция 8. Алгоритмы. Алгоритмизация. Алгоритмические языки | ПО ДИСЦИПЛИНЕ

    Дата добавления: 2013-12-13 ; Просмотров: 1608 ; Нарушение авторских прав? ;

    Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

    2 года назад я написал статью о классификации знаний в области программирования. Это было на волне интереса и моей активной деятельности по самообразованию в компьютерных науках. Написал статью и забыл о ней. Публиковать на Хабре не собирался. В конце концов, она базируется на моем личном опыте и знаних, которые могут оказаться весьма субъективны.

    Недавно, на фоне постоянно поступающих вопросов «как научиться программированию?», я вспомнил про этот материал и перечитал его. Прошло уже 2 года, пополнился опыт, добавились знания, изменились взгляды. Но эта статья для меня не утратила актуальности, и я не нашел почти ничего, что хотел бы в ней изменить. Мне показалось, что она все же достойна публикации. И, возможно, кому-то она поможет в собственном профессиональном развитии.

    Читайте также:  Как починить кроссовки внутри на пятке

    Но прежде, чем «запустить» материал, еще небольшое отступление. О том, почему вообще я все это писал. Дело в том, что у нас в странах бывшего СССР с образованием в области IT очень туго. С одной стороны нет программ обучения, которые подготовят специалистов на должном уровне (наверное, за очень редкими исключениями, которые можно отнести к погрешности). С другой стороны, из-за широких возможностей самообразования, программисты и не спешат учиться в ВУЗах — все стремятся начать практиковать как можно раньше. Часто изучается только одно направление (например PHP+Mysql — самое популярное) и в бой. Причем, на этом все заканчивается. В итоге у нас огромное количество программистов, которые и базовых вещей не знают. Отсюда вытекают проблемы с качеством кода, и с эффекивностью алгоритмов, с велосипедированием.

    Но программирование — это полноценная область знаний, которая требует в том числе и инженерной подготовки. Точно так же, как строительство или телекоммуникации. Да, построить дом (особняк) можно своими руками и без образования. А поднять большинство сайтов можно прочитав пару книг по PHP и HTML. Но многоэтажку без специальной подготовки не построишь, как и Гугл не напишешь, не зная основ.

    Возможности для самообразования в компьютерных науках сейчас огромны. Единственное, чего не хватает, — это системности подготовки. Как разобраться, что и в какой последовательности изучать? Мне кажется, что этот материал поможет разложить по полочкам области знаний в компьютерных науках и составить для себя программу изучения по книгам. Выбор книг — тема отдельная, в рамки статьи не входит, но это можно обсудить в комментариях.

    Поехали.

    Меня иногда спрашивают, что нужно выучить, чтобы стать программистом. Вопрос несколько наивный, т.к. нормально ответить на него по-моему невозможно. Т.е. для начала нужно выяснить, каким программистом нужно стать. Да и вообще, программистом ли? Кроме того, на рынке востребованы как высококвалифицированные дорогие специалисты, так и “рабочая сила”. Пакет знаний и опыта первых и вторых отличается в значительной степени.

    Но, не смотря на такую расплывчатость вопроса, дать ответ на него все же можно. Можно описать примерный максимум знаний, которые так или иначе относятся к программированию. Собственно, этот максимум обычно и стремятся преподать в ВУЗах на специальностях, в названии которых фигурирует слово “программист”.

    Я учился на программиста в колледже, потом в университете. Именно университет немного разложил по полочкам понимание и взаимосвязь дисциплин, относящиеся к так называемым компьютерным наукам. Пусть знания, которые там давали, были недалекими и немного устаревшими, но системный подход у них был сформирован неплохой. Спустя годы практики после окончания обучения я пришел к выводу, что ВУЗовская классификация дисциплин вполне хороша и позволяет ответить на вопрос, что же следует знать любому программисту.

    Конечно, знать все невозможно. Да и не нужно. Кроме того, какие-то вопросы нужно знать глубоко, а в других достаточно поверхностного обзорного понимания. По-этому в зависимости от специализации некоторые дисциплины более актуальны, некоторые менее. Но общие базовые знания необходимы почти по всем из них для любого инженера-программиста, от системщика до веб-разработчика.

    В предыдущем абзаце я специально ввел термин “инженер-программист”. Как-то получается так, что программист — это не обязательно инженер. Даже из определения Википедии следует, что инженер — это в первую очередь проектировщик. Это тот, кто создает, т.е. проектирует системы. А в практике программирования проектирование нужно не всегда. Иногда достаточно кодирования: используя данный набор технологий, слепить что-то работающее. Типичный пример — стадо корпоративных или маркетинговых сайтов на джумлах, ворпрессах, друпалах и т.д. Это уровень техника, не инженера. Это уровень среднего образования. И работать техником можно даже после окончания курсов какого-либо языка программирования, крепкая теоретическая база там не нужна.

    И, возвращаясь к инженерам-программистам, я хочу предложить свой граф дисциплин, которые изучают программисты. Очевидно, что одни дисциплины активно используют знания других, либо вовсе вырастают из других. Соответственно для полного понимания “верхнего” предмета, необходим какой-то уровень понимания нижнего.

    Граф состоит из предметов (дисциплин) и разбит на уровни. Самый нижний — Общая база — вообще отношения к компьютерным наукам не имеет. Он приведен только для того, чтобы показать, на чем базируются дисциплины компьютерных наук.

    Между дисциплинами существуют 2 вида связей: использование (обычная стрелка) и расширение (контур стрелки). Использование подразумевает необходимость фрагментарных знаний другого предмета, а расширение — необходимость как минимум обзорных, но полных знаний расширяемой дисциплины.

    Читайте также:  Техническая поддержка asus ноутбук

    Первый уровень из CS (computer science) — Специальная база. Это стартовая площадка для любого программиста по четырем фронтам:

    1. арифметические основы ЭВМ (системы счисления и операции с числами, логические операции);
    2. физические основы ЭВМ (полупроводники, транзисторы, логические элементы, схемы, интегральные микросхемы);
    3. теория алгоритмов (алгоритмы и структуры данных; сложность, эффективность; способы представления информации в памяти);
    4. языки программирования (задача и понятие ЯП, уровни, типы языков, абстракция, уровни абстракции, трансляция/компиляция, шаблоны, принципы, парадигмы — обзор).

    Специальная база предлагает фундаментальные теоретические знания, на которых строятся дисциплины более высоких уровней. Для среднего программиста необходимы обзорные знания по всем предметам специальной базы. Для некоторых специализаций требуется углубленное понимание теории алгоритмов (прежде всего — разработчикам разного рода библиотек).

    Уровнем выше располагаются дисциплины, которые являются базовыми именно в программировании. По-этому я назвал этот уровень Основы. В него входят:

    1. архитектура ЭВМ (процессоры, микроархитектура, память, шины, ввод/вывод);
    2. обработка информации (теория информации, статистика, модели, поиск данных, лингвистические аспекты, обработка информации средствами табличных процессоров);
    3. основы C/C++ (базовые свойства языка, синтаксис, указатели, ввод/вывод, массивы, основы STL).

    Следом за Основами идет Уровень 1. Это первый прикладной уровень, и особо нетерпеливые могут начать коммерческую практику, овладев этим уровнем. Он включает 5 дисциплин:

    1. основы ASM (развитие архитектуры ЭВМ в направлении программирования, написание простейших драйверов и алгоритмов, ассемблерные вставки в C/C++);
    2. C/C++ (ООП, разработка прикладных приложений, библиотеки, WinAPI, make utils, параллельное программирование).
    3. операционные системы (архитектура ОС, процессы, межпроцессное взаимодействие, потоки, планирование, работы с памятью и переферией, POSIX-системы);
    4. системный анализ (предметная область, бизнес-процессы, потоки, диаграммы, принципы и теория системного анализа);
    5. базы данных (теория множеств, виды СУБД, реляционные СУБД, модели данных, SQL, конкретные БД).

    Следующий уровень — Уровень 2 — развивает предыдущий. Кстати, компьютерные сети попали в него только по той причине, что для их изучения желательно (но не обязательно) предварительно освоить операционные системы. По развитости этот предмет ближе все-таки к первому уровню.

    Уровень 2 включает:

    1. разработку ПО (жизненный цикл ПО, этапы разработки, основы ведения программных проектов, инструменты);
    2. анализ данных (Data Mining, OLAP, машинное обучение, нейронные сети, ИИ);
    3. компьютерные сети (по уровням стеков TCP/IP и/или ISO/OSI “от и до”, протоколы, сетевое программирование на C/C++);
    4. языки программирования с управляемым кодом (управляемый код, виртуальные машины, сборщики мусора, юнит-тестирование, собственно практика на C# или Java);

    Уровень 3 — последний уровень для среднего программиста. Он самый объемный и включает только те дисциплины, которые непосредственно связаны с разработкой ПО. Всего их получилось 6:

    1. разработка UI и юзабилити (принципы построения интерфейсов пользователя);
    2. управление командами и проектами (методологии разработки и другие вопросы управления);
    3. тестирование ПО (обзорно: виды тестирования, инструменты);
    4. веб-технологии (HTTP-протокол, веб-сервер, CGI, кэширование и проксирование, клиентское программирование);
    5. распределенные системы (архитектуры распределенных систем, протоколы сетевого взаимодействия компонентов, инструменты, принципы, подходы к построению распределенных систем, отказоустойчивость, большие данные, высокие нагрузки);
    6. интерпретируемые языки программирования (особенности, основы по двум-трем языкам, практика по одному-двум языкам: JS, PHP, Python, Ruby).

    Все, что идет выше, — расширенные Экспертные знания. По большому счету этот уровень можно расширять неограниченно, добавляя в него смежные с разработкой дисциплины и наиболее сложные аспекты разработки ПО. Я привел 3 примера — разработка компиляторов, разработка операционных систем и построение архитектур больших программно-аппаратных систем, либо архитектур, рассчитанных на особо высокие нагрузки. Зависимости к нижним уровням га графе не рисовал, т.к. получится слишком много стрелок, идущих через все уровни, вплоть до Общей базы. Наверное, широкие зависимости — это один из признаков вопросов экспертного характера. Здесь как раз подтверждается то, что экспертный уровень требует самых широких знаний и хорошего опыта.

    Интересно в графе то, что он не только показывает предпочтительный порядок изучения предметов, но также:

    1. дает возможность понять, какие дисциплины нужны больше, какие меньше для работы в определенной специализации (просто выбрать основной предмет специализации и смотреть по связям и удаленности до других);
    2. дает понимание, как изучать компьютерные науки, если начинать не с фундаментальных основ, а с прикладных знаний (например, PHP) — можно двигаться по связям в стороны и вниз — собственно именно таким был мой личный путь развития (и я никак не могу назвать его самым легким, эффективным и оптимальным).

    Граф — это модель. А хорошая модель как правило дает ответы сразу на множество вопросов. Я поставил перед собой задачу сделать хороший граф, близкий к реальности. Естественно, он основан на моем личном опыте и не претендует на идеал. Я старался сделать его наиболее объективным. И еще раз напоминаю, что это граф для программиста. Т.е. для тестировщика, сисадмина и других близких к программированию профессий он будет более или менее близким, но явно другим.

    Рекомендуем к прочтению

    Добавить комментарий

    Ваш адрес email не будет опубликован.