Меню Закрыть

Чему равно расстояние между прямыми

В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.

Навигация по странице.

Расстояние между скрещивающимися прямыми – определение.

Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.

В разделе взаимное расположение прямых в пространстве мы упоминали, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Через каждую из скрещивающихся прямых проходит единственная плоскость, которой параллельна другая прямая.

Пусть даны скрещивающиеся прямые a и b . Докажем, что через прямую b проходит единственная плоскость, параллельная прямой a (абсолютно аналогично можно будет доказать, что через прямую a проходит плоскость, параллельная прямой b , притом только одна). Это будет служить доказательством теоремы.

Отметим на прямой b некоторую точку Q . В статье параллельные прямые, параллельность прямых была доказана теорема, гласящая, что через произвольную точку пространстве проходит единственная прямая, параллельная заданной прямой. Следовательно, через точку Q можно провести единственную прямую, параллельную прямой a . Обозначим ее a1 .

В разделе способы задания плоскости мы упоминали, что через две пересекающиеся прямые проходит единственная плоскость (что следует из аксиомы о плоскости, проходящей через три различные точки, не лежащие на одной прямой). Следовательно, через пересекающиеся прямые b и a1 проходит единственная плоскость. Обозначим ее .

Признак параллельности прямой и плоскости позволяет утверждать, что прямая a параллельна плоскости (так как прямая a параллельна прямой a1 , лежащей в плоскости ).

Единственность плоскости следует из единственности прямой, проходящей через заданную точку пространства параллельно заданной прямой.

Теперь можно переходить непосредственно к определению расстояния между скрещивающимися прямыми. Определение расстояния между скрещивающимися прямыми дается через расстояние между прямой и параллельной ей плоскостью.

Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

Рассмотрим скрещивающиеся прямые a и b . Отметим на прямой a некоторую точку М1 , через прямую b проведем плоскость , параллельную прямой a , и из точки М1 опустим перпендикуляр М1H1 на плоскость . Длина перпендикуляра M1H1 есть расстояние между скрещивающимися прямыми a и b .

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения.

При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию. Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п. Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.

Если же в трехмерном пространстве введена прямоугольная система координат Oxyz и в ней заданы скрещивающиеся прямые a и b , то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.

Пусть – плоскость, проходящая через прямую b , параллельно прямой a . Тогда искомое расстояние между скрещивающимися прямыми a и b по определению равно расстоянию от некоторой точки М1 , лежащей на прямой a , до плоскости . Таким образом, если мы определим координаты некоторой точки М1 , лежащей на прямой a , и получим нормальное уравнение плоскости в виде , то мы сможем вычислить расстояние от точки до плоскости по формуле (эта формула была получена в статье нахождение расстояния от точки до плоскости). А это расстояние равно искомому расстоянию между скрещивающимися прямыми.

Читайте также:  Формула ньютона для корня

Задача сводится к получению координат точки М1 , лежащей на прямой a , и к нахождению нормального уравнения плоскости .

С определением координат точки М1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве. А вот на получении уравнения плоскости стоит остановиться подробнее.

Если мы определим координаты некоторой точки М2 , через которую проходит плоскость , а также получим нормальный вектор плоскости в виде , то мы сможем написать общее уравнение плоскости как .

В качестве точки М2 можно взять любую точку, лежащую на прямой b , так как плоскость проходит через прямую b . Таким образом, координаты точки М2 можно считать найденными.

Осталось получить координаты нормального вектора плоскости . Сделаем это.

Плоскость проходит через прямую b и параллельна прямой a . Следовательно, нормальный вектор плоскости перпендикулярен и направляющему вектору прямой a (обозначим его ), и направляющему вектору прямой b (обозначим его ). Тогда в качестве вектора можно взять векторное произведение векторов и , то есть, . Определив координаты и направляющих векторов прямых a и b и вычислив , мы найдем координаты нормального вектора плоскости .

Итак, мы имеем общее уравнение плоскости : .

Остается только привести общее уравнение плоскости к нормальному виду и вычислить искомое расстояние между скрещивающимися прямыми a и b по формуле .

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:

  • определить координаты и точек М1 и М2 соответственно, лежащих на прямых a и b соответственно;
  • получить координаты и направляющих векторов прямых a и b соответственно;
  • найти координаты нормального вектора плоскости , проходящей через прямую b параллельно прямой a , из равенства ;
  • записать общее уравнение плоскости как ;
  • привести полученное уравнение плоскости к нормальному виду ;
  • вычислить расстояние от точки до плоскости по формуле – это и есть искомое расстояние между скрещивающимися прямыми a и b .

Разберем решение примера.

В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b . Прямую a определяют параметрические уравнения прямой в пространстве вида , а прямую b – канонические уравнения прямой в пространстве . Найдите расстояние между заданными скрещивающимися прямыми.

Очевидно, прямая a проходит через точку и имеет направляющий вектор . Прямая b проходит через точку , а ее направляющим вектором является вектор .

Вычислим векторное произведение векторов и :

Таким образом, нормальный вектор плоскости , проходящей через прямую b параллельно прямой a , имеет координаты .

Тогда уравнение плоскости есть уравнение плоскости, проходящей через точку и имеющей нормальный вектор :

Нормирующий множитель для общего уравнения плоскости равен . Следовательно, нормальное уравнение этой плоскости имеет вид .

Осталось воспользоваться формулой для вычисления расстояния от точки до плоскости :

Это и есть искомое расстояние между заданными скрещивающимися прямыми.

Расстояние между двумя прямыми линиями на плоскости – это наименьшее расстояние между любыми двумя точками, лежащими на линии. Или между точкой лежащей на прямой с другой параллельной прямой. В случае пересекающихся линий, расстояние между ними равно нулю, потому что минимальное расстояние между ними равно нулю (в точке пересечения); в то время как в случае двух параллельных линий, это перпендикуляр -расстояние от точки на одной прямой к другой прямой.

Формулы и доказательства [ править | править код ]

Если линии параллельны, то расстояние между ними-это постоянная величина, так что не важно, какая точка выбрана, чтобы измерить расстояние. Даны уравнения двух вертикальных параллельных линий

y = m x + b 1 <displaystyle y=mx+b_<1>,> y = m x + b 2 , <displaystyle y=mx+b_<2>,,>

расстояние между двумя параллельными прямыми-это расстояние между двумя точками пересечения этих линий с перпендикуляром

y = − x / m , <displaystyle y=-x/m,,>

Это расстояние может быть найдено при решении системы линейных уравнений

< y = m x + b 1 y = − x / m , <displaystyle <eginy=mx+b_<1>\y=-x/m,,end>>

< y = m x + b 2 y = − x / m , <displaystyle <eginy=mx+b_<2>\y=-x/m,,end>>

чтобы получить координаты точек пересечения. Определяем координаты точки пересечения

( x 1 , y 1 ) = ( − b 1 m m 2 + 1 , b 1 m 2 + 1 ) , <displaystyle left(x_<1>,y_<1>
ight) =left(<frac <-b_<1>m><2>+1>>,<frac <1>><2>+1>>
ight),,>

Читайте также:  Сайт знакомств без vip

( x 2 , y 2 ) = ( − b 2 m m 2 + 1 , b 2 m 2 + 1 ) . <displaystyle left(x_<2>,y_<2>
ight) =left(<frac <-b_<2>m><2>+1>>,<frac <2>><2>+1>>
ight),.>

Расстояние между точками

d = ( b 1 m − b 2 m m 2 + 1 ) 2 + ( b 2 − b 1 m 2 + 1 ) 2 , <displaystyle d=<sqrt <left(<frac <1>m-b_<2>m><2>+1>>
ight)^<2>+left(<frac <2>-b_<1>><2>+1>>
ight)^<2>>>,,>

которое можно сократить, как

d = | b 2 − b 1 | m 2 + 1 . <displaystyle d=<frac <|b_<2>-b_<1>|><sqrt <2>+1>>>,.>

Если известны уравнения прямых в декартовой системе координат, то можно их записать::

a x + b y + c 1 = 0 <displaystyle ax+by+c_<1>=0,> a x + b y + c 2 = 0 , <displaystyle ax+by+c_<2>=0,,>

где расстояние между прямыми можно записать так

d = | c 2 − c 1 | a 2 + b 2 . <displaystyle d=<frac <|c_<2>-c_<1>|><sqrt <2>+b^<2>>>>.>

Статья нацелена на нахождение расстояния между скрещивающимися прямыми методом координат. Будет рассмотрено определение расстояния между этими прямыми, получим алгоритм при помощи которого преобразуем нахождение расстояния между скрещивающимися прямыми. Закрепим тему решением подобных примеров.

Расстояние между скрещивающимися прямыми – определение

Предварительно необходимо доказать теорему, которая определяет связь между заданными скрещивающимися прямыми.

Раздел взаимного расположения прямых в пространстве говорит о том, что если две прямые называют скрещивающимися, если их расположение не в одной плоскости.

Через каждую пару скрещивающихся прямых может проходить плоскость, параллельная данной, причем только одна.

По условию нам даны скрещивающиеся прямые a и b . Необходимо доказать проходимость единственной плоскости через прямую b , параллельную данной прямой a . Аналогичное доказательство необходимо применять для прямой a , через которую проходит плоскость, параллельная данной прямой b .

Для начала необходимо отметить точку Q на прямой b . Если следовать из определения параллельности прямых, то получаем, что через точку пространства можно провести прямую, параллельную заданной прямой, причем только одну. Значит, через точку Q проходит только одна прямая, параллельная прямой a . Примем обозначение а а 1 .

Раздел способов задания плоскости было говорено о том, что прохождение единственной плоскости возможно через две пересекающиеся прямые. Значит, получаем, что прямые b и а 1 – пересекающиеся прямые, через которые проходит плоскость, обозначаемая χ .

Исходя из признака параллельности прямой с плоскостью, можно сделать вывод, что заданная прямая a параллельна относительно плоскости χ , потому как прямая a параллельна прямой а 1 , расположенной в плоскости χ .

Плоскость χ является единственной, так как прямая, проходящая через заданную прямую, находящуюся в пространстве, параллельна заданной прямой. Рассмотрим на рисунке, предоставленном ниже.

При переходе от определения расстояния между скрещивающимися прямыми определяем расстояние через расстояние между прямой и параллельной ей плоскостью.

Расстоянием между скрещивающимися прямыми называют расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

То есть расстояние между прямой и плоскостью является расстоянием от заданной точки к плоскости. Тогда применима формулировка определения расстояния между скрещивающимися прямыми.

Расстоянием между скрещивающимися прямыми называют расстояние от некоторой точки скрещивающихся прямых к плоскости, проходящей через другую прямую, параллельную первой прямой.

Произведем подробное рассмотрение прямых a и b . Точка М 1 располагается на прямой a , через прямую b проводится плоскость χ , параллельная прямой a . Из точки М 1 проводим перпендикуляр М 1 Н 1 к плоскости χ . Длина этого перпендикуляра является расстоянием между скрещивающимися прямыми a и b . Рассмотрим на рисунке, приведенном ниже.

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения

Расстояния между скрещивающимися прямыми находятся при построении отрезка. Искомое расстояние равняется длине этого отрезка. По условию задачи его длина находится по теореме Пифагора, по признакам равенства или подобия треугольников или другим.

Когда имеем трехмерное пространство с системой координат О х у z с заданными в ней прямыми a и b , то вычисления следует проводить, начиная с расстояния между заданными скрещивающимися при помощи метода координат. Произведем подробное рассмотрение.

Пусть по условию χ является плоскостью, проходящей через прямую b , которая параллельна прямой a . Искомое расстояние между скрещивающимися прямыми a и b равняется расстоянию от точки М 1 , расположенной на прямой a , к плоскости _ χ . Для того, чтобы получить нормальное уравнение плоскости χ , необходимо определить координаты точки M 1 ( x 1 , y 1 , z 1 ) , расположенной на прямой a . Тогда получим cos α · x + cos β · y + cos γ · z – p = 0 , которое необходимо для определения расстояния M 1 H 1 от точки M 1 x 1 , y 1 , z 1 к плоскости χ . Вычисления производятся по формуле M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 – p . Необходимое расстояние равняется искомому расстоянию между скрещивающимися прямыми.

Читайте также:  Что делать если компьютер не читает диск

Данная задача предполагает получение координат точки М 1 , которая располагается на прямой a , нахождение нормального уравнения плоскости χ .

Определение координат точки М 1 необходимо и возможно при знании основных видов уравнений прямой в пространстве. Чтобы получить уравнение плоскости χ , необходимо остановиться подробней на алгоритме вычисления.

Если координаты x 2 , y 2 , z 2 будут определены при помощи точки М 2 , через которую проведена плоскость χ , получаем нормальный вектор плоскости χ в виде вектора n → = ( A , B , C ) . Следуя из этого, можно записать общее уравнение плоскости χ в виде A · x – x 2 + B · ( y – y 2 ) + C · ( z – z 2 ) = 0 .

Вместо точки М 2 может быть взята любая другая точка, принадлежащая прямой b , потому как плоскость χ проходит через нее. Значит, координаты точки М 2 найдены. Необходимо перейти к нахождению нормального вектора плоскости χ .

Имеем, что плоскость χ проходит через прямую b , причем параллельна прямой a . Значит, нормальный вектор плоскости χ перпендикулярен направляющему вектору прямой a , обозначим a → , и направляющему вектору прямой b , обозначим b → . Вектор n → будет равняться векторному произведению a → и b → , что значит, n → = a → × b → . После определения координат a x , a y , a z и b x , b y , b z направляющих векторов заданных прямых a и b , вычисляем

n → = a → × b → = i → j → k → a x a y a z b x b y b z

Отсюда находим значение координат A , B , C нормального вектора к плоскости χ .

Знаем, что общее уравнение плоскости χ имеет вид A · ( x – x 2 ) + B · ( y – y 2 ) + C · ( z – z 2 ) = 0 .

Необходимо привести уравнение к нормальному виду cos α · x + cos β · y + cos γ · z – p = 0 . После чего нужно произвести вычисления искомого расстояния между скрещивающимися прямыми a и b , исходя из формулы M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 – p .

Чтобы найти расстояние между скрещивающимися прямыми a и b , необходимо следовать алгоритму:

  • определение координат ( x 1 , y 1 , z 1 ) и x 2 , y 2 , z 2 точек М 1 и М 2 , расположенных на прямых a и b соответственно;
  • получение координат a x , a y , a z и b x , b y , b z , принадлежащим направляющим векторам прямых a и b ;
  • нахождение координат A , B , C , принадлежащим вектору n → на плоскости χ , проходящей через прямую b , расположенную параллельно a , по равенству n → = a → × b → = i → j → k → a x a y a z b x b y b z ;
  • запись общего уравнения плоскости χ в виде A · x – x 2 + B · ( y – y 2 ) + C · ( z – z 2 ) = 0 ;
  • приведение полученного уравнения плоскости χ к уравнению нормального вида cos α · x + cos β · y + cos γ · z – p = 0 ;
  • вычисление расстояния M 1 H 1 от M 1 x 1 , y 1 , z 1 к плоскости χ , исходя из формулы M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 – p .

Пример 1

Имеются две скрещивающиеся прямые в прямоугольной системе координат О х у z трехмерного пространства. Прямая a определена параметрическим уравнением прямой в пространстве x = – 2 y = 1 + 2 · λ z = 4 – 3 · λ , прямая b при помощи канонического уравнения прямой в пространстве x 1 = y – 1 – 2 = z + 4 6 . Найти расстояние между скрещивающимися прямыми.

Понятно, что прямая а пересекает точку M 1 ( – 2 , 1 , 4 ) с направляющим вектором a → = ( 0 , 2 , – 3 ) , а прямая b пересекает точку M 2 ( 0 , 1 , – 4 ) с направляющим вектором b → = ( 1 , – 2 , 6 ) .

Для начала следует произвести вычисление направляющих векторов a → = ( 0 , 2 , – 3 ) и b → = ( 1 , – 2 , 6 ) по формуле. Тогда получаем, что

a → × b → = i → j → k → 0 2 – 3 1 – 2 6 = 6 · i → – 3 · j → – 2 · k →

Отсюда получаем, что n → = a → × b → – это вектор плоскости χ , который проходит через прямую b параллельно a с координатами 6 , – 3 , – 2 . Получим:

6 · ( x – 0 ) – 3 · ( y – 1 ) – 2 · ( z – ( – 4 ) ) = 0 ⇔ 6 x – 3 y – 2 z – 5 = 0

Находим нормирующий множитель для общего уравнения плоскости 6 x – 3 y – 2 z – 5 = 0 . Вычислим по формуле 1 6 2 + – 3 2 + – 2 2 = 1 7 . Значит, нормальное уравнение примет вид 6 7 x – 3 7 y – 2 7 z – 5 7 = 0 .

Необходимо воспользоваться формулой, чтобы найти расстояние от точки M 1 – 2 , 1 , 4 до плоскости, заданной уравнением 6 7 x – 3 7 y – 2 7 z – 5 7 = 0 . Получаем, что

M 1 H 1 = 6 7 · ( – 2 ) – 3 7 · 1 – 2 7 · 4 – 5 7 = – 28 7 = 4

Отсюда следует, что искомым расстоянием является расстояние между заданными скрещивающимися прямыми, является значение 4 .

Рекомендуем к прочтению

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code

Adblock detector