Меню Закрыть

0 Больше или меньше отрицательного числа

Содержание

Проще всего посмеяться над людьми, не понимающими основ арифметики, однако не стоит с этим спешить. Отрицательные числа мучили наш разум столетиями и делают это до сих пор. Именно поэтому подземные этажи зданий принято обозначать буквами (например, LG — lower ground («подземный этаж») и B — basement («подвальный этаж»)) или алфавитно-цифровыми знаками (скажем, B1, B2 и B3), а не отрицательными числами (–1, –2 и –3). Когда мы датируем события, произошедшие до рождения Христа, например, когда Евклид написал свой труд «Начала», мы предпочитаем говорить «в 300 году до нашей эры», а не «в –300 году нашей эры». А у бухгалтеров вообще множество способов избегать знака «минус»: записывать долги красным, прибавлять аббревиатуру DR (от debtor — «должник») или заключать неприятную сумму в скобки.

Ни древнегреческие, ни египетские, ни вавилонские математики не создали концепцию отрицательных чисел. В древние времена числа использовались для подсчёта и измерения, а как можно подсчитать или измерить то, что меньше, чем ничего? Давайте попытаемся встать на место обитателей античного мира, чтобы понять, какой интеллектуальный прорыв им нужно было совершить. Мы знаем, что 2 + 3 = 5, потому что, когда у нас есть две буханки хлеба и нам дают ещё три, у нас будет пять буханок. Мы знаем, что 2 − 1 = 1, потому что, когда, имея две буханки хлеба, мы отдаём одну, у нас остаётся ещё одна. Но что значит 2 − 3? Если у меня есть только две буханки хлеба, я не могу отдать три. Однако предположим, что я всё же могу это сделать — тогда у меня останется минус одна буханка. Что же значит «минус одна буханка»? Это не обычная буханка хлеба. Это, скорее, её отсутствие, причём такое, что если к нему прибавить буханку хлеба, то будет получено «ничто». Неудивительно, что древние считали эту концепцию абсурдной.

Однако в древней Азии допускали существование отрицательных величин — правда, в определённой степени. Ко временам Евклида у китайцев уже была система вычислений, в которой использовались бамбуковые палочки. Обычные палочки представляли положительные числа, их китайцы называли «истинными», а палочки, покрашенные в чёрный цвет, олицетворяли отрицательные числа, их называли «ложными». Китайцы размещали палочки на разграфлённой доске таким образом, чтобы каждое число занимало отдельную ячейку, а каждая колонка соответствовала одному уравнению. Опытный вычислитель решал уравнения, передвигая бамбуковые палочки. Если решение состояло из обычных палочек, это было истинное число, которое принималось. Если решение состояло из чёрных палочек, это было ложное число, и оно отбрасывалось. Тот факт, что китайцы использовали физические объекты для представления отрицательных величин, свидетельствовал о существовании этих чисел, хотя они и были всего лишь инструментами для вычисления положительных величин. Китайцы поняли одну очень важную истину: если математические объекты приносят пользу, не имеет значения, что они не согласуются с повседневным опытом. Пусть этой проблемой занимаются философы.

Через несколько столетий в Индии математики нашли для отрицательных чисел материальный контекст — деньги. Если я одалживаю у вас пять рупий, у меня получается долг в пять рупий — отрицательная величина, которая станет нулевой только после того, как я верну вам эту сумму. Астроном VII века Брахмагупта установил правила арифметических операций с положительными и отрицательными числами, которые назвал «имуществом» и «долгом». Кроме того, он ввёл число ноль в его современном понимании.

Долг минус ноль — это долг.
Имущество минус ноль — это имущество. Ноль минус ноль — это ноль.
Долг, вычтенный из нуля, — это имущество. Имущество, вычтенное из нуля, — это долг. И так далее.

Брахмагупта описывал точное значение имущества и долга с помощью нуля и других девяти цифр, которые легли в основу десятичного представления чисел, используемого в настоящее время. Индийские числительные распространились на территории Ближнего Востока, Северной Африки, а к концу Х века — и в Испании. Тем не менее понадобилось ещё три столетия, прежде чем отрицательные числа получили широкое признание в Европе. Такая задержка была обусловлена тремя причинами: историческая связь с долгами, а значит, и с порочной практикой ростовщичества; всеобщая подозрительность в отношении новых методов, приходящих из мусульманских земель; продолжительное влияние древнегреческой философии, согласно которой величина не может быть меньше, чем ничто.

Читайте также:  Mirascreen инструкция на русском для андроид

Со временем счетоводы привыкли к использованию отрицательных чисел в своей профессии, математики же очень долго остерегались их. В XV и XVI веках отрицательные величины были известны как абсурдные числа (numeri absurdi), и даже в XVII столетии многие считали их бессмысленными. В XVIII веке преобладал следующий аргумент против отрицательных чисел. Рассмотрим такое уравнение:

С арифметической точки зрения это правильное утверждение. Тем не менее оно парадоксально, поскольку гласит, что отношение меньшего числа (−1) к большему (1) эквивалентно отношению большего числа (1) к меньшему (−1). Этот парадокс стал предметом множества дискуссий, но никто так и не смог его объяснить. В попытках понять смысл отрицательных чисел многие математики, в том числе и Леонард Эйлер, пришли к невероятному выводу, что эти числа больше бесконечности. Данная концепция вытекает из анализа такой последовательности:

Что эквивалентно ряду:

По мере уменьшения числа в нижней части дроби (знаменателя) от 3 до 2, а затем до 1 и 1/2, абсолютное значение дроби становится больше, а когда значение знаменателя приближается к нулю, значение дроби стремится к бесконечности. Была выдвинута гипотеза, что, когда знаменатель равен нулю, значение дроби бесконечно, а когда он меньше нуля (другими словами, когда это отрицательное число) , дробь должна быть больше бесконечности. В настоящее время мы избегаем этой парадоксальной ситуации, утверждая, что бессмысленно делить число на ноль. Дробь 10/0 не бесконечна; она «не определена».

В этом смешении разных мнений прозвучала одна чёткая и понятная концепция, принадлежавшая английскому математику Джону Уоллису, который придумал эффективный способ визуальной интерпретации отрицательных чисел. В написанном в 1685 году труде A Treatise of Algebra («Трактат по алгебре») Уоллис впервые представил числовую ось, на которой положительные и отрицательные числа отображают расстояния от ноля в противоположных направлениях. Уоллис писал, что если человек отойдёт от ноля вперёд на пять ярдов, а затем вернётся назад на восемь ярдов, то он «переместится на позицию, которая на 3 ярда дальше, чем ничто. А значит, −3 — это та же точка на линии, что и +3, но не вперёд, как должно быть, а назад». Заменив концепцию количества концепцией позиции, Уоллис показал, что отрицательные числа нельзя считать «ни бесполезными, ни абсурдными». Как оказалось, это было явное преуменьшение. Понадобилось несколько лет на то, чтобы идея Уоллиса получила широкое распространение, но теперь, по прошествии времени, очевидно, что цифровая ось — самая успешная разъяснительная схема всех времён. У неё множество разных областей применения, от графиков до термометров. Теперь, когда мы можем увидеть отрицательные числа на числовой оси, у нас больше нет концептуальных трудностей с тем, чтобы представить себе, что это такое.

Любое отрицательное число больше или меньше нуля?

По своему ОПРЕДЕЛЕНИЮ. Понимаешь, что такое "по определению"? Вот я говорю, знамя — это флаг. Это определение знамени, оно объясняет, что такое знамя. Теперь я спрашиваю, почему знамя — это флаг? Правильный ответ: По своему определению. Потому что знамя — это флаг. Так вот отрицательными числами называются числа, меньшие нуля. Поэтому они ПО ОПРЕДЕЛЕНИЮ меньше нуля, а поскольку нуль меньше всех положительных чисел, то они и меньше всех положительных чисел. Понятно? Все отрицательные числа, и только они, меньше, чем нуль

  • Помогите: Биология 6 класс номер 69 (Сонина) 1)Дайте определения понятий Теплокровные животные это-. Холоднокровные животные это-. 2)Приведите примеры животных,которые относятся к этим группам Тепелокровные________? Холоднокровные_______?
  • Если на вертикально установленную пружину длиной 20 см положить груз, длина пружиныстанет равной 18 см. Какой минимальной величины будет длина пружины, если тот же грузуронить на нее с высоты 8 см. Ось пружины остается вертикальной.
  • Найдите в произведении Маяковского: "Необычное приключение, бывшее в Владимиром Маяковским летом на даче", неологизмы. Объясните как они помогают экономно создать картину необычайного приключения.
  • Квадрат разрезали на прямоугольники так что любая прямая,параллельная одной из сторон квадрата и не содержащая сторон прямоугольников,пересекает ровно 40 прямоугольников.На какое наименьшее число прямоугольников мог быть разрезан квадрат? Варианты ответа: А.80 Б.156 В.160 Г.1600 Д.3200
Читайте также:  Почему не получается установить скайп

В рамках натуральных чисел можно вычесть только меньшее число из большего, а переместительный закон не включает вычитание — например, выражение 3 + 4 − 5 <displaystyle 3+4-5>допустимо, а выражение с переставленными операндами 3 − 5 + 4 <displaystyle 3-5+4>недопустимо.

Добавление к натуральным числам отрицательных чисел и нуля делает возможной операцию вычитания для любых пар натуральных чисел. В результате такого расширения получается множество (кольцо) «целых чисел ». При дальнейших расширениях множества чисел рациональными или вещественными числами для них тем же путём получаются соответствующие отрицательные значения. Для комплексных чисел упорядоченность не определена, и понятия «отрицательное число» не существует.

Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля . Для них, как и для положительных чисел, определено отношение порядка , позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля:

Полная и вполне строгая теория отрицательных чисел была создана только в XIX веке (Уильям Гамильтон и Герман Грассман).

Отрицательные числа — это числа со знаком минус (−), например −1, −2, −3. Читается как: минус один, минус два, минус три.

Примером применения отрицательных чисел является термометр, показывающий температуру тела, воздуха, почвы или воды. В зимнее время, когда на улице очень холодно, температура бывает отрицательной (или как говорят в народе «минусовой»).

Например, −10 градусов холода:

Обычные же числа, которые мы рассматривали ранее такие как 1, 2, 3 называют положительными. Положительные числа — это числа со знаком плюс (+).

При записи положительных чисел знак + не записывают, поэтому мы и видим привычные для нас числа 1, 2, 3. Но следует иметь ввиду, что эти положительные числа выглядят так: +1, +2, +3.

Координатная прямая

Координатная прямая это прямая линия, на которой располагаются все числа: и отрицательные и положительные. Выглядит следующим образом:

Здесь показаны только числа от −5 до 5. На самом деле координатная прямая бесконечна. На рисунке представлен лишь её небольшой фрагмент.

Числа на координатной прямой отмечают в виде точек. На рисунке жирная чёрная точка является началом отсчёта. Начало отсчёта начинается с нуля. Слева от начала отсчёта отмечают отрицательные числа, а справа — положительные.

Координатная прямая продолжается бесконечно по обе стороны. Бесконечность в математике обозначается символом ∞. Отрицательное направление будет обозначаться символом −∞ , а положительное символом +∞ . Тогда можно сказать, что на координатной прямой располагаются все числа от минус бесконечности до плюс бесконечности:

Каждая точка на координатной прямой имеет своё имя и координату. Имя — это любая латинская буква. Координата — это число, которое показывает положение точки на этой прямой. Проще говоря, координата это то самое число, которое мы хотим отметить на координатной прямой.

Например, точка А(2) читается как «точка А с координатой 2« и будет обозначаться на координатной прямой следующим образом:

Здесь A — это имя точки, 2 — координата точки A.

Пример 2. Точка B(4) читается как «точка B с координатой 4« и будет обозначаться на координатной прямой так:

Здесь B — это имя точки, 4 — координата точки B .

Пример 3. Точка M(−3) читается как «точка M с координатой минус три» и будет обозначаться на координатной прямой так:

Здесь M — это имя точки, −3 — координата точки M.

Точки можно обозначать любыми буквами. Но общепринято обозначать их большими латинскими буквами. Более того, начало отчёта, которое по другому называют началом координат принято обозначать большой латинской буквой O

Легко заметить, что отрицательные числа лежат левее относительно начала отсчёта, а положительные числа правее.

Существуют такие словосочетания как «чем левее, тем меньше» и «чем правее, тем больше» . Наверное, вы уже догадались о чём идёт речь. При каждом шаге влево число будет уменьшаться в меньшую сторону. И при каждом шаге вправо число будет увеличиваться. Стрелка, направленная вправо, указывает на положительное направление отсчёта.

Сравнение отрицательных и положительных чисел

Правило 1. Любое отрицательное число меньше любого положительного числа.

Читайте также:  Please press any key to continue

Например, сравним два числа: −5 и 3. Минус пять меньше, чем три, несмотря на то, что пятёрка бросается в глаза в первую очередь, как цифра большая, чем три.

Связано это с тем, что −5 является отрицательным числом, а 3 — положительным. На координатной прямой можно увидеть, где располагаются числа −5 и 3

Видно, что −5 лежит левее, а 3 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что любое отрицательное число меньше любого положительного числа. Отсюда следует, что

«Минус пять меньше, чем три»

Правило 2. Из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой.

Например, сравним числа −4 и −1. Минус четыре меньше, чем минус единица.

Связано это опять же с тем, что на координатной прямой −4 располагается левее, чем −1

Видно, что −4 лежит левее, а −1 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой. Отсюда следует, что

Правило 3. Ноль больше любого отрицательного числа.

Например, сравним 0 и −3. Ноль больше, чем минус три. Связано это с тем, что на координатной прямой 0 располагается правее, чем −3

Видно, что 0 лежит правее, а −3 левее. А мы говорили, что «чем правее, тем больше» . И правило говорит, что ноль больше любого отрицательного числа. Отсюда следует, что

Ноль больше, чем минус три

Правило 4. Ноль меньше любого положительного числа.

Например, сравним 0 и 4. Ноль меньше, чем 4. Это в принципе ясно и так. Но мы попробуем увидеть это воочию, опять же на координатной прямой:

Видно, что на координатной прямой 0 располагается левее, а 4 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что ноль меньше любого положительного числа. Отсюда следует, что

В статье ниже озвучим принцип сравнения отрицательных чисел: сформулируем правило и применим его в решении практических задач.

Правило сравнения отрицательных чисел

В основе правила – сравнение модулей исходных данных. По сути, сравнить два отрицательных числа – значит сравнить положительные числа, равные модулям сравниваемых отрицательных чисел.

При сравнении двух отрицательных чисел меньшим является то число, модуль которого больше; бОльшим является то число, модуль которого меньше. Заданные отрицательные числа являются равными, если их модули равны.

Сформулированное правило применимо как к отрицательным целым числам, так и к рациональным и действительным.

Геометрическое толкование подтверждает принцип, озвученный в указанном правиле: на координатной прямой отрицательное число, которое является меньшим, находится левее, чем большее отрицательное. Это утверждение, в общем, верно для любых чисел.

Примеры сравнения отрицательных чисел

Самым простым примером сравнения отрицательных чисел является сравнение целых чисел. С подобной задачи и начнем.

Необходимо сравнить отрицательные числа — 65 и — 23 .

Решение

Согласно правилу, для осуществления действия сравнения отрицательных чисел сначала необходимо определить их модули. | — 65 | = 65 и | — 23 | = 23 . Теперь сравним положительные числа, равные модулям заданных: 65 > 23 . Применим вновь правило, гласящее, что больше то отрицательное число, модуль которого меньше. Таким образом, получим: — 65 — 23 .

Ответ: — 65 — 23 .

Чуть сложнее сравнивать отрицательные рациональные числа: действие в конечном счете приводит к сравнению обыкновенных или десятичных дробей.

Необходимо определить, какое из заданных чисел больше: — 4 3 14 или — 4 , 7 .

Решение

Определим модули сравниваемых чисел. — 4 3 14 = 4 3 14 и | — 4 , 7 | = 4 , 7 . Теперь сравним полученные модули. Целые части дробей равны, так что приступим к сравнению дробных частей: 3 14 и 0 , 7 . Осуществим перевод десятичной дроби 0 , 7 в обыкновенную: 7 10 , найдем общие знаменатели сравниваемых дробей, получим: 15 70 и 49 70 . Тогда результатом сравнения станет: 15 70 49 70 или 3 14 0 , 7 . Таким образом, 4 3 14 4 , 7 . fff Применив правило сравнения отрицательных чисел, имеем: — 4 3 14 — 4 , 7

Также можно было осуществить сравнение путем перевода обыкновенной дроби в десятичную. Разница – лишь в удобстве вычисления.

Ответ: — 4 3 14 — 4 , 7

Сравнение отрицательных действительных чисел производится согласно тому же правилу.

Рекомендуем к прочтению

Добавить комментарий

Ваш адрес email не будет опубликован.